Average Connectivity and Average Edge-connectivity in Graphs

Suil O
joint work with
Jaehoon Kim

The State University of New York, Korea

CanaDAM 2019, Vancouver, May 30, 2019
Basic Definitions

- The **connectivity** of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G - S$ is disconnected.
Basic Definitions

- The **connectivity** of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G - S$ is disconnected.
- The **edge-connectivity** of a graph G, written $\kappa'(G)$, is the minimum size of an edge set F such that $G - F$ is disconnected.
Basic Definitions

- The **connectivity** of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G - S$ is disconnected.
- The **edge-connectivity** of a graph G, written $\kappa'(G)$, is the minimum size of an edge set F such that $G - F$ is disconnected.

The connectivity and the edge-connectivity of a graph measure the difficulty of breaking the graph apart. However, since these values are based on a worst-case situation, it does not reflect the “global (edge) connectedness” of the graph.

Figure: Two Graphs G_1 and G_2 with $\kappa = \kappa' = 1$

Basic Definitions

The **average connectivity** of a graph G with n vertices, written $\overline{\kappa}(G)$, is $\frac{\sum_{u,v \in V(G)} \kappa(u,v)}{\binom{n}{2}}$, where $\kappa(u, v)$ is the minimum number of vertices whose deletion makes v unreachable from u.

The **average edge-connectivity** of a graph G with n vertices, written $\overline{\kappa}'(G)$, is $\frac{\sum_{u,v \in V(G)} \kappa'(u,v)}{\binom{n}{2}}$, where $\kappa'(u, v)$ is the minimum number of edges whose deletion makes v unreachable from u.

![Graphs](image)

Figure: Two Graphs with $\overline{\kappa}(G_1) = \overline{\kappa}'(G_1) = \frac{27}{7}$ and $\overline{\kappa}(G_2) = \overline{\kappa}'(G_2) = \frac{12}{7}$
In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \overline{d} and n vertices, then \[\frac{\overline{d}^2}{n-1} \leq \kappa(G) \leq \overline{d}. \]
Average Connectivity and Matching Number

In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{-d^2}{n-1} \leq \kappa(G) \leq \bar{d}$.

We prove a bound on the average connectivity in terms of the matching number.
Average Connectivity and Matching Number

In 2002, Beineke, Oellermann and Pippert introduced the average connectivity and found several properties of it.

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{d^2}{n-1} \leq \kappa(G) \leq \bar{d}$.

We prove a bound on the average connectivity in terms of the matching number.

Theorem (Kim and O 2013)

For a connected graph G, $\kappa(G) \leq 2\alpha'(G)$, and this is sharp. Furthermore, if G is connected and bipartite, then $\kappa(G) \leq \left(\frac{9}{8} - \frac{3n-4}{8n^2-8n}\right) \alpha'(G)$, and this is sharp.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S = V(G) - M$.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S = V(G) - M$.
- For $v v' \in M$, put v and v' into T, T' and R as follows: If neither v nor v' has a neighbor in S, then put both in T. If v' has a neighbor in S and v does not, then put v in T and v' in T'.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

- If G has a perfect matching or is a complete graph, then we are done. Assume not.
- Let M be a maximum matching in G and let $S = V(G) - M$.
- For $vv' \in M$, put v and v' into T, T' and R as follows: If neither v nor v' has a neighbor in S, then put both in T. If v' has a neighbor in S and v does not, then put v in T and v' in T'. If both have neighbors in S, put them both in R.

Suil O

Average Connectivity and Matching Number

Average Edge-connectivity in Regular Graphs
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- **Case 1:** $u \in S$. If P and P' are distinct internally disjoint u, v-paths, then both of them must visit $V(M) - T$ immediately after u. $\kappa(u, v) \leq 2m - t$.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- **Case 1:** $u \in S$. If P and P' are distinct internally disjoint u, v-paths, then both of them must visit $V(M) - T$ immediately after u. $\kappa(u, v) \leq 2m - t$.

- **Case 2:** $u, v \in T'$. $\kappa(u, v) \leq n - 1 = 2m + s - 1$.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

Consider three cases to obtain upper bounds on $\kappa(u, v)$ depending on the possible locations of distinct vertices u and v.

- **Case 1:** $u \in S$. If P and P' are distinct internally disjoint u, v-paths, then both of them must visit $V(M) - T$ immediately after u. $\kappa(u, v) \leq 2m - t$.
- **Case 2:** $u, v \in T'$. $\kappa(u, v) \leq n - 1 = 2m + s - 1$.
- **Case 3:** $u \in R \cup T$. For the vertex after u on a u, v-path, at most one vertex of S is available. Thus, $\kappa(u, v) \leq 2m$.

Definitions

Average Connectivity and Matching Number

Average Edge-connectivity in Regular Graphs
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\bar{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\kappa(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$\kappa(G) \leq \frac{(2m-t)[\binom{s}{2} + s(n-s)] + (2m+s-1)\binom{t'}{2} + 2m[\binom{n}{2} - \binom{s}{2} - s(n-s) - \binom{t'}{2}]}{\binom{n}{2}}$$
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$\overline{\kappa}(G) \leq \frac{(2m-t)[\binom{s}{2}+s(n-s)]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-\binom{s}{2}-s(n-s)-\binom{t'}{2}]}{\binom{n}{2}}$$

$$\leq \frac{(2m-t)[\binom{s}{2}+st]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-\binom{s}{2}-st-\binom{t'}{2}]}{\binom{n}{2}}$$
Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

\[
\overline{\kappa}(G) \leq \frac{(2m-t)[\binom{s}{2}+s(n-s)]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-\binom{s}{2}-s(n-s)-\binom{t'}{2}]}{\binom{n}{2}} \\
\leq \frac{(2m-t)[\binom{s}{2}+st]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-\binom{s}{2}-st-\binom{t'}{2}]}{\binom{n}{2}} \\
= 2m + \frac{(s-1)\binom{t'}{2}-t\binom{s}{2}-t^2s}{\binom{n}{2}} \leq 2m - t \frac{s^2+t-1}{n(n-1)} \leq 2m.
\]
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

\[
\overline{\kappa}(G) \leq \frac{(2m-t)[\binom{s}{2}+s(n-s)]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-(\binom{s}{2})-s(n-s)-(\binom{t'}{2})]}{\binom{n}{2}}
\]

\[
\leq \frac{(2m-t)[\binom{s}{2}+st]+(2m+s-1)\binom{t'}{2}+2m[\binom{n}{2}-(\binom{s}{2})-st-(\binom{t'}{2})]}{\binom{n}{2}}
\]

\[
= 2m + \frac{(s-1)\binom{t'}{2}-t\binom{s}{2}-t^2s}{\binom{n}{2}} \leq 2m - t \frac{s^2+t-1}{n(n-1)} \leq 2m.
\]

To have equality in the last inequality, $t = 0$ or 1.
Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$
\overline{\kappa}(G) \leq \frac{(2m-t)\left(\binom{s}{2}+s(n-s)\right)+(2m+s-1)\binom{t'}{2}+2m\left[\binom{n}{2}-\binom{s}{2}-s(n-s)-\binom{t'}{2}\right]}{\binom{n}{2}}
$$

$$
\leq \frac{(2m-t)\left(\binom{s}{2}+st\right)+(2m+s-1)\binom{t'}{2}+2m\left[\binom{n}{2}-\binom{s}{2}-st-\binom{t'}{2}\right]}{\binom{n}{2}}
$$

$$
= 2m + \frac{(s-1)\binom{t'}{2}-t\binom{s}{2}+t^2s}{\binom{n}{2}} \leq 2m - t \frac{s^2+t-1}{n(n-1)} \leq 2m.
$$

To have equality in the last inequality, $t = 0$ or 1. $t = 1$ requires $s = 0$, which is a contradiction.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

For a connected graph G, $\overline{\kappa}(G) \leq 2\alpha'(G)$. This is sharp only for complete graphs with an odd number of vertices.

$$\overline{\kappa}(G) \leq \frac{(2m-t)[\binom{s}{2}+s(n-s)]+(2m+s-1)(t')\binom{n}{2}+2m[\binom{n}{2}-(\binom{s}{2}-s(n-s)-(t')\binom{t'}{2}]}{\binom{n}{2}}$$

$$\leq \frac{(2m-t)[\binom{s}{2}+st]+(2m+s-1)(t')\binom{n}{2}+2m[\binom{n}{2}-(\binom{s}{2}-st-(t')\binom{t'}{2}]}{\binom{n}{2}}$$

$$= 2m + \frac{(s-1)(t')\binom{n}{2}-t\binom{s}{2}-t^2s}{\binom{n}{2}} \leq 2m - t \frac{s^2+t-1}{n(n-1)} \leq 2m.$$

To have equality in the last inequality, $t = 0$ or 1.

$t = 1$ requires $s = 0$, which is a contradiction.

$t = 0$ requires $s = 1$. G is the complete graph with n vertices.
Proof (Average Connectivity and Matching Number)

Theorem (Kim and O 2013)

If G is connected and bipartite, then

$$\bar{\kappa}(G) \leq \left(\frac{9}{8} - \frac{3n-4}{8n^2-8n} \right) \alpha'(G).$$

This is sharp only for $K_{q,3q-2}$ for a positive integer q.
Definitions
Average Connectivity and Matching Number
Average Edge-connectivity in Regular Graphs

Average Edge-connectivity and Matching Number

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{\bar{d}^2}{n-1} \leq \kappa'(G) \leq \bar{d}$.
Average Edge-connectivity and Matching Number

Theorem (Dankelmann and Oellermann 2003)

If G has average degree \bar{d} and n vertices, then $\frac{d^2}{n-1} \leq \kappa'(G) \leq \bar{d}$.

Theorem (Kim and O 2013)

For a connected graph G, $\kappa'(G) \leq 2\alpha'(G)$, and this is sharp. Furthermore, if G is connected and bipartite, then $\kappa'(G) \leq \left(\frac{9}{8} - \frac{3n-4}{8n^2-8n}\right)\alpha'(G)$, and this is sharp.
Average Edge-connectivity and Average Connectivity

The above graphs show that there can be a huge gap between average edge-connectivity and average connectivity.
Average Edge-connectivity and Average Connectivity

Question 1. What is the largest gap between the average edge-connectivity and the average connectivity in an n-vertex connected graph?

$,\eta:\text{odd}$.
Question 1. What is the largest gap between the average edge-connectivity and the average connectivity in an \(n \)-vertex connected graph?

Question 2. What is the largest ratio of the average edge-connectivity and the average connectivity in an \(n \)-vertex connected graph?
An extremal problem: What is the smallest average edge-connectivity of an n-vertex connected r-regular graph?
Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013) If G is a connected cubic graph with n vertices, other than K_4, then

$$\kappa'(G) \geq \left(\frac{n}{2}\right) + \frac{7n + 58}{4}.$$

Equality holds only for graphs in the following family. If a graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an i-balloon to be such a component incident to i cut-edges. Let $B_1 = P_3 + K_2$ and let $B_1' = K_4 - e$.

Suil O

Average Connectivity and Average Edge-connectivity in Graphs
Average Connectivity and Matching Number
Average Edge-connectivity in Regular Graphs

Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then $\left(\frac{n}{2}\right) \kappa'(G) \geq \left(\frac{n}{2}\right) + \frac{7n+58}{4}$.

Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then \(\frac{n}{2} \kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4} \). Equality holds only for graphs in the following family.
Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then $\left(\binom{n}{2}\right)\kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4}$. Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G.
Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then $\left(\begin{array}{c} n \\ 2 \end{array}\right) \kappa'(G) \geq \left(\begin{array}{c} n \\ 2 \end{array}\right) + \frac{7n+58}{4}$. Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an i-balloon to be such a component incident to i cut-edges.
Average Edge-connectivity in Cubic Graphs

We found the best lower bound for the first nontrivial case $r = 3$.

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then \(\binom{n}{2} \kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4} \). Equality holds only for graphs in the following family.

If a graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an i-balloon to be such a component incident to i cut-edges. Let $B_1 = P_3 + K_2$ and let $B'_1 = K_4 - e$.
Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then
\[
\left(\frac{n}{2}\right)\kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4}.
\]
Equality holds only for graphs in a special family.
Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$\binom{n}{2}\kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4}. \text{ Equality holds only for graphs in a special family.}$$

Sketch of proof: Consider a minimal counterexample G.

$k'(G) = 1$: If not, then $k'(G)\binom{n}{2} \geq 2\binom{n}{2} \geq \binom{n}{2} + \frac{7n+58}{4}$.

Every 1-balloon of G is B_1: If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$.
Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then
\[
\left(\frac{n}{2}\right)\kappa'(G) \geq \left(\frac{n}{2}\right) + \frac{7n+58}{4}.
\]
Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

1. $\kappa'(G) = 1$: If not, then $\kappa'(G)\left(\frac{n}{2}\right) \geq 2\left(\frac{n}{2}\right) \geq \left(\frac{n}{2}\right) + \frac{7n+58}{4}$.

2. Every 1-balloon of G is B_1: If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$. Let $|V(D_1)| = 5 + a$.

Let G' be the graph obtained from G by replacing D_1 with B_1.
Definitions

Average Connectivity and Matching Number

Average Edge-connectivity in Regular Graphs

Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$
\left(\frac{n}{2}\right)\kappa'(G) \geq \left(\frac{n}{2}\right) + \frac{7n+58}{4}.
$$

Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

1. If not, then $\kappa'(G)\left(\frac{n}{2}\right) \geq 2\left(\frac{n}{2}\right) \geq \left(\frac{n}{2}\right) + \frac{7n+58}{4}$.

Every 1-balloon of G is B_1:

If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$. Let $|V(D_1)| = 5 + a$.

Let G' be the graph obtained from G by replacing D_1 with B_1.

Then $\kappa'(G')\left(\frac{n-a}{2}\right) \geq \left(\frac{n-1}{2}\right) + \frac{7(n-1)+58}{4}$.
Definitions
Average Connectivity and Matching Number
Average Edge-connectivity in Regular Graphs

Sketch of Proof

Theorem (Kim and O 2013)
If G is a connected cubic graph with n vertices, other than K_4, then
\[
\binom{n}{2}\kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4}.
\]
Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

$k'(G) = 1$: If not, then $k'(G)\binom{n}{2} \geq 2\binom{n}{2} \geq \binom{n}{2} + \frac{7n+58}{4}$.

Every 1-balloon of G is B_1: If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$. Let $|V(D_1)| = 5 + a$.

Let G' be the graph obtained from G by replacing D_1 with B_1.

Then $k'(G')\binom{n-a}{2} \geq \binom{n-1}{2} + \frac{7(n-1)+58}{4}$.

$k'(G)\binom{n}{2} = k'(G')\binom{n-a}{2} - k'(B_1)\binom{5}{2} - 5(n - a - 5) + k'(D_1)\binom{5+a}{2} + (5 + a)(n - a - 5)$
Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$\frac{n}{2} \kappa'(G) \geq \binom{n}{2} + \frac{7n + 58}{4}.$$ Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

1. **$\kappa'(G) = 1$:** If not, then $\kappa'(G)(\frac{n}{2}) \geq 2(\frac{n}{2}) \geq (\frac{n}{2}) + \frac{7n + 58}{4}.$

2. **Every 1-balloon of G is B_1:** If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$. Let $|V(D_1)| = 5 + a$.

3. Let G' be the graph obtained from G by replacing D_1 with B_1.

Then $\kappa'(G')(\frac{n-a}{2}) \geq \left(\frac{n-1}{2}\right) + \frac{7(n-1) + 58}{4}$.

$$\kappa'(G) \left(\frac{n}{2}\right) = \kappa'(G')(\frac{n-a}{2}) - \kappa'(B_1) \left(\frac{5}{2}\right) - 5(n - a - 5) + \kappa'(D_1) \left(\frac{5+a}{2}\right) + (5 + a)(n - a - 5) \geq \left(\frac{n-a}{2}\right) + \frac{7(n-a) + 58}{4} - 26 - 5(n - a - 5) + 2 \left(\frac{5+a}{2}\right) + (5 + a)(n - a - 5)$$
Average Connectivity and Matching Number

Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$\binom{n}{2} \kappa'(G) \geq \binom{n}{2} + \frac{7n+58}{4}.$$
Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

$\kappa'(G) = 1$: If not, then $\kappa'(G)\binom{n}{2} \geq 2\binom{n}{2} \geq \binom{n}{2} + \frac{7n+58}{4}$.

Every 1-balloon of G is B_1: If not, then there exists an 1-balloon D_1 of G such that $D_1 \neq B_1$. Let $|V(D_1)| = 5 + a$.

Let G' be the graph obtained from G by replacing D_1 with B_1.

Then $\kappa'(G')(\binom{n-a}{2}) \geq (n-1)\binom{5}{2} + \frac{7(n-1)+58}{4}$.

$\kappa'(G)\binom{n}{2} = \kappa'(G')(\binom{n-a}{2}) - \kappa'(B_1)\binom{5}{2} - 5(n-a-5) + \kappa'(D_1)\binom{5+a}{2}$

$+ (5+a)(n-a-5) \geq \binom{n-a}{2} + \frac{7(n-a)+58}{4} - 26 - 5(n-a-5) + 2\binom{5+a}{2} + (5+a)(n-a-5) > \binom{n}{2} + \frac{7n+58}{4}n.$
Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then
\[
\binom{n}{2} \kappa'(G) \leq \binom{n}{2} + \frac{7n+58}{4}.
\]
Equality holds only for graphs in a special family.
Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then \(\frac{n}{2} \kappa'(G) \leq \left(\frac{n}{2}\right) + \frac{7n+58}{4}\). Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

\[\kappa'(G) = 1:\]

Every 1-balloon of G is B_1.
Definitions

Average Connectivity and Matching Number

Average Edge-connectivity in Regular Graphs

Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$\left(\frac{n}{2}\right)\kappa'(G) \leq \left(\frac{n}{2}\right) + \frac{7n+58}{4}.$$

Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

$\kappa'(G) = 1$:

Every 1-balloon of G is B_1.

Every 2-balloon of G is B'_1.
Sketch of Proof

Theorem (Kim and O 2013)

If G is a connected cubic graph with n vertices, other than K_4, then

$$\binom{n}{2} \kappa'(G) \leq \binom{n}{2} + \frac{7n + 58}{4}.$$

Equality holds only for graphs in a special family.

Sketch of proof: Consider a minimal counterexample G.

$k'(G) = 1$:

Every 1-balloon of G is B_1.

Every 2-balloon of G is B'_1.

There are no i-balloons in G for $i \geq 3$.
Questions

Question 3. What is the best upper bound for $\bar{\kappa}'(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?
Question 3. What is the best upper bound for $\overline{\kappa}'(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that r is odd. Let $B_r = P_3 + \frac{r-1}{2} K_2$ and $B'_r = K_{r+1} - e$. For odd r, we guess that the graph obtained from the graph in the special family by replacing B_1 and B'_1 with B_r and B'_r are the extremal graphs.
Questions

Question 3. What is the best upper bound for $\overline{\kappa}'(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?
Questions

Question 3. What is the best upper bound for $\bar{\kappa}'(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that $r = 4$.

![Graph Diagram]
Question 3. What is the best upper bound for $\overline{\kappa}'(G)$ in an n-vertex connected r-regular graphs for $r \geq 4$?

Suppose that $r = 4$.
Thank you

Thank You :)