HEAD-BASED BRACKETING PARADOXES IN ARmenian compounds

Hossef Dolatian

Stony Brook University

Sept 25, 2020
• **Title:** Head-based bracketing paradoxes in Armenian compounds
Title: Head-based bracketing paradoxes in Armenian compounds

1. Linguistic Content: Armenian compounds
• **Title:** Head-based bracketing paradoxes in Armenian compounds
 1. Linguistic Content: Armenian compounds
 2. Empirical Problem: Bracketing paradox
Title: Head-based bracketing paradoxes in Armenian compounds

1. Linguistic Content: Armenian compounds
2. Empirical Problem: Bracketing paradox
3. Theoretical Analysis: Heads & Cyclicity
Title: Head-based bracketing paradoxes in Armenian compounds
1. Linguistic Content: Armenian compounds
2. Empirical Problem: Bracketing paradox
3. Theoretical Analysis: Heads & Cyclicity

Phorum: Where’s the phonology?
• **Title**: Head-based bracketing paradoxes in Armenian compounds
 1. Linguistic Content: Armenian compounds
 2. Empirical Problem: Bracketing paradox
 3. Theoretical Analysis: Heads & Cyclicity

• **Phorum**: Where’s the phonology?
 1. **Phonology** = what principles control the alternation of morphemes?
 → ... in Armenian compounds
Title: Head-based bracketing paradoxes in Armenian compounds

1. Linguistic Content: Armenian compounds
2. Empirical Problem: Bracketing paradox
3. Theoretical Analysis: Heads & Cyclicity

Phorum: Where’s the phonology?

1. **Phonology** = *what principles control the alternation of morphemes?*
 → ... in Armenian compounds
2. **Bracketing Paradox:** contradictions between phonology and morphology
3. **Heads:** contradictions arise from heads in morphology vs. heads in phonology
4. Cyclicity teases apart the different contradictions
● PREVIEW

● PARADOXES
 ● Classifying theories
 ● Constituencies in paradoxes

● ARMENIAN DATA
 ● Constituencies in Armenian
 ● Bracketing paradox in Armenian

● ANALYZING THE PARADOX

● VARIATION IN PROSODY

● WRAP-UP
Table of Contents

- **Preview**

- **Paradoxes**
 - Classifying theories
 - Constituencies in paradoxes

- **Armenian data**
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- **Analyzing the paradox**

- **Variation in prosody**

- **Wrap-up**
Syllable-counting plurals

- Plural allomorphy in simplex words

<table>
<thead>
<tr>
<th>σ</th>
<th>σ-er</th>
<th>(σσ^+)</th>
<th>(σσ^+-ner)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pág</td>
<td>pag-ér</td>
<td>‘yards’</td>
<td></td>
</tr>
<tr>
<td>panág</td>
<td>panag-nér</td>
<td>‘armies’</td>
<td></td>
</tr>
<tr>
<td>akarág</td>
<td>akarag-nér</td>
<td>farms</td>
<td></td>
</tr>
</tbody>
</table>
Syllable-counting plurals

- Plural allomorphy in simplex words

\[
\begin{array}{c|cc}
\sigma & \sigma-er & \sigma\sigma^+ \quad \sigma\sigma^+-ner \\
pág & pag-éř & \text{‘yards’} & \text{panág} & \text{panag-nér} & \text{‘armies’} & \text{akarág} & \text{akarag-nér} & \text{farms}
\end{array}
\]

- Stress does not matter – everything has final stress
Syllable-counting plurals

- Plural allomorphy in simplex words
 \[
 \begin{array}{lll}
 \sigma & \sigma\text{-er} & \sigma\sigma^+ & \sigma\sigma^+\text{-ner} \\
 \text{pág} & \text{pag-ér} & \text{panáq} & \text{panag-nér} \\
 \text{‘yards’} & \text{‘armies’} & \text{‘armies’} & \text{farms}
 \end{array}
 \]

- Stress does not matter – everything has final stress

- Mnemonic: short-allomorph → smaller syllables

 \[
 \begin{align*}
 \text{PL} \rightarrow -\text{er} & \quad / \#\sigma _ & \quad \text{pag} & \quad \text{pag-er} & \quad \text{‘yards’} \\
 \text{PL} \rightarrow -\text{ner} & \quad /\text{elsewhere} & \quad \text{panag} & \quad \text{panag-ner} & \quad \text{‘armies’}
 \end{align*}
 \]
Compound plurals

- Compounds: concatenate 2 stems with \(-a-\)

 \[\text{t}f\acute{a}r + \text{s}írd \quad \text{‘evil + heart’} \quad \text{antsr}é\acute{v} + \text{t}f\acute{u}r \quad \text{‘rain + water’}\]

 \[\text{t}f\acute{a}r-a-sírd \quad \text{‘evil-hearted’} \quad \text{antsr}é\acute{v}-a-\text{t}f\acute{u}r \quad \text{‘rain-water’}\]

- Final stress on compound ~ 1 PWord

- Plural?
Compound plurals

- Compounds: concatenate 2 stems with -a-

 \[\text{tfár} + \text{sírd} \quad \text{‘evil + heart’} \quad \text{antsrév} + \text{tfúr} \quad \text{‘rain + water’}\]

 \[\text{tfar-a-sírd} \quad \text{‘evil-hearted’} \quad \text{antsrev-a-tfúr} \quad \text{‘rain-water’}\]

- Final stress on compound \(\sim 1\) PWord

- Plural?
 - STEM2 is monosyllabic but compound is polysyllabic...
• Compounds: concatenate 2 stems with -a-

\[\tilde{t}f\acute{a}r + s\acute{i}rd \quad \text{‘evil + heart’} \quad \text{antsrёv} + \tilde{t}f\acute{u}r \quad \text{‘rain + water’} \]

\[\tilde{t}f\acute{a}r-a-s\acute{i}rd \quad \text{‘evil-hearted’} \quad \text{antsrev-a-} \tilde{t}f\acute{u}r \quad \text{‘rain-water’} \]

• Final stress on compound \(\sim 1 \) PWord

• Plural?

 - STEM2 is monosyllabic but compound is polysyllabic...

 - Count entire compound

\[\tilde{t}f\acute{a}r-a-si\acute{r}d \quad \text{‘evil-hearted’} \]

\[\tilde{t}f\acute{a}r-a-si\acute{r}d-ner \quad \text{‘evil-hearted ppl’} \]
COMPOUND PLURALS

- Compounds: concatenate 2 stems with -a-
 \[\text{\texttt{\textit{\textbackslash tfar} + \textit{\textbackslash sird}}} \quad \text{‘evil + heart’} \quad \text{\texttt{\textit{\textbackslash an\textbackslash tsr} + \textit{\textbackslash Tfur}}} \quad \text{‘rain + water’} \]
 \[\text{\texttt{\textit{\textbackslash tfar-a-sird}}} \quad \text{‘evil-hearted’} \quad \text{\texttt{\textit{\textbackslash an\textbackslash tsrev-a-t\textbackslash Tfur}}} \quad \text{‘rain-water’} \]

- Final stress on compound ~ 1 PWord

- Plural?
 - \text{\texttt{\textit{\textbackslash tfar-a-sird}}} is monosyllabic but compound is polysyllabic...

- Count entire compound
 \[\text{\texttt{\textit{\textbackslash tfar-a-sird}}} \quad \text{‘evil-hearted’} \quad \text{\texttt{\textit{\textbackslash an\textbackslash tsrev-a-t\textbackslash Tfur}}} \quad \text{‘rain-water’} \]

- Only count \text{\texttt{\textit{\textbackslash tfar-a-sird}}}
 \[\text{\texttt{\textit{\textbackslash tfar-a-sird-ner}}} \quad \text{‘evil-hearted ppl’} \quad \text{\texttt{\textit{\textbackslash an\textbackslash tsrev-a-t\textbackslash Tfur-er}}} \quad \text{‘rain-waters’} \]
ARMENIAN PARADOX

- Bracketing paradox: two contradictory constituencies
 - **MORPHO**: Plural has semantic scope over compound
 - **PHONO**: Plural should count the *entire* compound
ARMENIAN PARADOX

- Bracketing paradox: two contradictory constituencies
 - **MORPHO**: Plural has semantic scope over compound
 - **PHONO**: Plural should count the *entire* compound

Transparent Plural

\[\text{transparent plural: } \tilde{t}f\text{ar-a-sird-ner} \]

‘evil-hearted ppl’

- **MORPHO**
 - STEM1: \(\tilde{t}f\text{ar} \)
 - STEM2: \(-a- \)
 - STEM3: \(\text{sird} \)
 - PL: \(-\text{ner} \)

- **PHONO**
 - \(\sigma's \)
 - STEM: \(\tilde{t}f\text{ar-a-sird-ner} \)
 - PL: \(-\text{ner} \)
ARMENIAN PARADOX

- Bracketing paradox: two contradictory constituencies
 - Morpho: Plural has semantic scope over compound
 - Phono: Plural should count the *entire* compound

Transparent Plural

$t\text{far-a-sird-ner}$

‘evil-hearted ppl’

Paradoxical Plural

antsrev-a-tfur-er

‘rain-waters’

\[\text{Morpho}\]

\[\text{Phono}\]
Questions

- Data:

 Transparent plural Paradoxical plural
 \(t\text{far-a-sird-ner} \) \(\text{antsrev-a-t\text{fur-er}} \)
 ‘evil-hearted people’ ‘rain-waters’

- Question: Why get transparent plurals vs. paradoxical plurals?
- A lot of tools for paradoxes...
Questions

- Data:

 \[\text{Transparent plural} \quad \text{Paradoxical plural}\]
 \[
 \text{\(\tilde{\text{t\text{\'far-a-sird-ner}}\)}\quad \text{\(\text{\(\tilde{\text{antsrev-a-t\text{\'fur-er}}\)}\)}

 'evil-hearted people' \quad 'rain-waters'

- Question: Why get transparent plurals vs. paradoxical plurals?
- A lot of tools for paradoxes...

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing ‘85</td>
<td>Head Operations</td>
</tr>
<tr>
<td>Late Adjunction ‘05</td>
<td>Prosodics Phonology</td>
</tr>
<tr>
<td>Sproat ‘85</td>
<td>Hoeksema ‘84</td>
</tr>
<tr>
<td>Newell ‘05</td>
<td>Nespor & Vogel ‘87</td>
</tr>
</tbody>
</table>
Questions

- Data:

<table>
<thead>
<tr>
<th>Transparent plural</th>
<th>Paradoxical plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t\text{far-a-sird-ner})</td>
<td>(\text{antsrev-a-t\text{fur-er}})</td>
</tr>
<tr>
<td>‘evil-hearted people’</td>
<td>‘rain-waters’</td>
</tr>
</tbody>
</table>

- Question: Why get transparent plurals vs. paradoxical plurals?
- A lot of tools for paradoxes...

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing</td>
<td>Head Operations</td>
</tr>
<tr>
<td>Late Adjunction</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Sproat ‘85</td>
<td>Hoeksema ‘84</td>
</tr>
<tr>
<td>Newell ‘05</td>
<td>Nespor&Vogel ‘87</td>
</tr>
</tbody>
</table>

→ distinguishes cyclic vs non-cyclic theories
→ works with cyclic, but not with counter-cyclic
→ Head-operations + prosodic constituents!
 ! distinguishes process-based vs. allomorphy based paradoxes
Questions

- Data:

 Transparent plural | Paradoxical plural
 \(\text{tsar-a-sird-ner} \) | \(\text{antsrev-a-tsfur-er} \)
 ‘evil-hearted people’ | ‘rain-waters’

- Question: Why get transparent plurals vs. paradoxical plurals?
- A lot of tools for paradoxes...

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th></th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing</td>
<td>Late Adjunction</td>
<td>Head Operations</td>
</tr>
<tr>
<td>Sproat ‘85</td>
<td>Newell ‘05</td>
<td>Hoeksema ‘84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nespor&Vogel ‘87</td>
</tr>
</tbody>
</table>

→ distinguishes cyclic vs non-cyclic theories
→ works with cyclic, but not with counter-cyclic
→ Head-operations + prosodic constituents!
! distinguishes process-based vs. allomorphy based paradoxes
Table of Contents

- Preview

- Paradoxes
 - Classifying theories
 - Constituencies in paradoxes

- Armenian Data
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- Analyzing the Paradox

- Variation in Prosody

- Wrap-up
Table of Contents

- Preview

- Paradoxes
 - Classifying theories
 - Constituencies in paradoxes

- Armenian data
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- Analyzing the paradox

- Variation in prosody

- Wrap-up
What is a Paradox

- What is a Bracketing Paradox?
 - Phono & Morpo need different constituencies
- Classic example: un-happi-er

```
Morpho

COMP

A

NEG A COMP

un happy -er

Phono

un happy -er
```
Types of theories

- Lots of theories since Pesetsky (1985)
- Usual classification is based on "which came first?"

<table>
<thead>
<tr>
<th>Phono 1st</th>
<th>Morpho 1st</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affix Raising</td>
<td>Morpho. Rebracketing</td>
<td>Late Adjunction</td>
</tr>
<tr>
<td></td>
<td>Prosodic Phono.</td>
<td>Head Operations</td>
</tr>
<tr>
<td></td>
<td>Local Dislocation</td>
<td>Autosegmental planes</td>
</tr>
</tbody>
</table>
Types of theories

- Lots of theories since Pesetsky (1985)
- Usual classification is based on "which came first?"

<table>
<thead>
<tr>
<th>Phono 1st</th>
<th>Morpho 1st</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affix Raising</td>
<td>Morpho. Rebracketing</td>
<td>Late Adjunction</td>
</tr>
<tr>
<td>Prosodic Phono.</td>
<td>Local Dislocation</td>
<td>Head Operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autosegmental planes</td>
</tr>
</tbody>
</table>

- Most popular nowadays are:
 - Rebracketing (Sproat, 1985)
 - Morphological Merger (Marantz, 1988)
 - Prosodic Phonology (Nespor and Vogel, 1986)
 - Late Adjunction (new but trending) (Newell, 2005)

→ Before we look at Armenian, let’s reclassify
Cyclic classification of theories

- Reclassify theories based on cyclic spell-out
Cyclic classification of theories

- Reclassify theories based on cyclic spell-out

 = Do we spell-out morphemes *in the same order* that morphemes are interpreted
Cyclic classification of theories

- Reclassify theories based on cyclic spell-out
 - Do we spell-out morphemes *in the same order* that morphemes are interpreted
- Most theories are counter-cyclic, some are cyclic

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological Rebracketing</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Morphological Merger</td>
<td>Head-Operations</td>
</tr>
<tr>
<td>Local Dislocation</td>
<td></td>
</tr>
<tr>
<td>Late Adjunction ...</td>
<td></td>
</tr>
</tbody>
</table>
What’s a cyclic theory

- Cyclic = we spell-out morphemes *in the same order* that morphemes are interpreted
- For *un-happier*, Prosodic Phonology is cyclic
What’s a cyclic theory

- Cyclic = we spell-out morphemes *in the same order* that morphemes are interpreted
- For *un-happier*, Prosodic Phonology is cyclic

![Diagram]

- Morpho: `COMP`\(\xrightarrow{\text{A}}\) `NEG`\(\xrightarrow{\text{happy}}\) `A`\(\xrightarrow{\text{-er}}\) `háppy`
- Phono (Prosody): `PW`\(\xrightarrow{\Sigma}\) `háppy`
What’s a cyclic theory

- Cyclic = we spell-out morphemes *in the same order* that morphemes are interpreted
- For *un-happier*, Prosodic Phonology is cyclic

```
MORPHO                     PHONO (Prosody)

COMP

A

NEG A COMP

un happy -er

PW' PW

ùn- háppy

Σ
```
What's a cyclic theory

- Cyclic = we spell-out morphemes *in the same order* that morphemes are interpreted
- For *un-happier*, Prosodic Phonology is cyclic

![Diagram](attachment:image.png)

- *-er* added after *-un* (= Morpho)
What’s a non-cyclic theory

- Counter-Cyclic = we spell-out morphemes not in a same order that morphemes are interpreted

- For \textit{un-happier}, Morphological Rebracketing is counter-cyclic

Original MORPHO

```
COMP
  /\   /
 A   A
  /\   /
NEG A COMP
  |  |  |
 un happy -er
```
What’s a non-cyclic theory

- Counter-Cyclic = we spell-out morphemes **not in a same order** that morphemes are interpreted
- For *un-happier*, Morphological Rebracketing is counter-cyclic

Original MORPHO Modified MORPHO

```
COMP
  A
    NEG un  A happy  COMP -er
```

```
COMP
  A
    NEG un  A happy  COMP -er
```
What’s a non-cyclic theory

- Counter-Cyclic = we spell-out morphemes **not in a same order** that morphemes are interpreted
- For *un-happier*, Morphological Rebracketing is counter-cyclic

![Diagram showing original and modified morphologies](image-url)
What’s a non-cyclic theory

- Counter-Cyclic = we spell-out morphemes **not in a same order** that morphemes are interpreted
- For *un-happier*, Morphological Rebracketing is counter-cyclic

![Diagram of Original Morpho, Modified Morpho, and Phono](#)
What’s a non-cyclic theory

- Counter-Cyclic = we spell-out morphemes not in a same order that morphemes are interpreted
- For un-happier, Morphological Rebracketing is counter-cyclic

Original MORPHO

Modified MORPHO

Phono
Table of Contents

- Preview

- Paradoxes
 - Classifying theories
 - Constituencies in paradoxes

- Armenian data
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- Analyzing the Paradox

- Variation in Prosody

- Wrap-up
Types of paradoxes

- Cross-linguistically, paradoxes differ in source of PHONO constituency

1. Allomorphy-Based PHONO: un-happier

```
MORPHO                       Allomorphy-Based PHONO

COMP
  A
  NEG  A  COMP
    un  happy  -er

Comp
  Allo
    un  happy  -er
```
Types of paradoxes

- Cross-linguistically, paradoxes differ in source of PHONO constituency

1. Allomorphy-Based PHONO: \textit{un-happier}
2. Process-Based PHONO: \textit{un-grammatical-ity}

![Diagram of morphological and process-based phonology]

- Morpho
- Process-Based PHONO

- N
- A
- A
- un-grammatical
- -ity
- un-grammatical
- -ity
Tendencies in paradoxes

- Usually in morphology-phonology paradoxes...
- Allomorphy ~ Process ~ Prosody
Tendencies in paradoxes

- Usually in morphology-phonology paradoxes...
- Allomorphy \sim Process \sim Prosody
- For *un-happier*: *un-* is Level 2 & PWord-external

<table>
<thead>
<tr>
<th>MORPHO</th>
<th>PHONO</th>
<th>Prosody</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WLevel</td>
<td>PW’</td>
</tr>
<tr>
<td>NEG A</td>
<td>SLevel</td>
<td>PW</td>
</tr>
<tr>
<td>un happy -er</td>
<td>un happy -er</td>
<td>ùn- háppy-er</td>
</tr>
</tbody>
</table>

- **Process-Based Allomorphy-Based**

![Diagram showing the structure of morphological and phonological processes.](image)
Tendencies in paradoxes

- Usually in morphology-phonology paradoxes...
- Allomorphy ~ Process ~ Prosody
- For *un-happier*: *un-* is Level 2 & PWord-external
- For *un-grammatical-ity*: *-ity* is attached Adjs with *-al*, while *un-* attaches to any Adj

→ Most theories predict that all the P-based representations match
Most paradoxes:

\[\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody}) \]

Most theories predict or can handle

\[\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody}) \]
What if

- Most paradoxes:
 \[\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody}) \]

- Most theories predict or can handle
 \[\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody}) \]

- But in Armenian compounds:
 \[(\text{Morpho} \sim \text{Process}) \neq (\text{Allomorphy} \sim \text{Prosody}) \]
What if

- Most paradoxes:
 $$\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody})$$
- Most theories predict or can handle
 $$\text{Morpho} \neq (\text{Process} \sim \text{Allomorphy} \sim \text{Prosody})$$
- But in Armenian compounds:
 $$(\text{Morpho} \sim \text{Process}) \neq (\text{Allomorphy} \sim \text{Prosody})$$
- Most theories are ill-equipped for Armenian, only some survive
 - Counter-cyclic theories fail, only cyclic ones survive
 - Need both Head Operations (Hoeksema, 1984) + Prosodic Phonology

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing/Merger</td>
<td>Head operations</td>
</tr>
<tr>
<td>Late Adjunction ...</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>PREVIEW</td>
<td></td>
</tr>
<tr>
<td>PARADOXES</td>
<td></td>
</tr>
<tr>
<td>- Classifying theories</td>
<td></td>
</tr>
<tr>
<td>- Constituencies in paradoxes</td>
<td></td>
</tr>
<tr>
<td>ARMENIAN DATA</td>
<td></td>
</tr>
<tr>
<td>- Constituencies in Armenian</td>
<td></td>
</tr>
<tr>
<td>- Bracketing paradox in Armenian</td>
<td></td>
</tr>
<tr>
<td>ANALYZING THE PARADOX</td>
<td></td>
</tr>
<tr>
<td>VARIATION IN PROSODY</td>
<td></td>
</tr>
<tr>
<td>WRAP-UP</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

- Preview

- Paradoxes
 - Classifying theories
 - Constituencies in paradoxes

- Armenian Data
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- Analyzing the Paradox

- Variation in Prosody

- Wrap-up
What's in a Word

- Armenian is an Indo-European isolate
- Agglutinative & suffixing
- Final stress

kórdz ‘work’
kordz-avór ‘worker’
kordz-avor-nér ‘workers’
What’s in a word

- Armenian is an Indo-European isolate
- Agglutinative & suffixing
- Final stress

- Compounds use a linking vowel -a-
- Can get suffixed
- Final stress

kórdz ‘work’ háts + kórdz ‘bread + work’
kordz-avór ‘worker’ hats-a-kórdz ‘baker’
kòrdz-avor-nér ‘workers’ hats-a-kòrdz-utjún ‘bakery’

→ Simplex words & Compounds form a single PWord
Do compounds show same processes as simple words?

Yup... Armenian phonology is stratal. Derivational suffixes trigger stem-level phonology. Inflectional suffixes trigger word-level phonology.

E.g., destressed high vowel reduction is stem-level:

- azn´iv 'sincere' > tS´ur 'water'
- azn@v-utj´un 'sincerity' > tS@r-aj´in 'aquatic'
- azniv-´e 'from sincere (one)' > tSur-´ov 'with water'

Reduction applies in compounds too!

- azn´iv + s´ird 'sincere + heart' > tS´ur + k´i > dz 'water + line'
- azn@v-a-s´ird 'sincere-hearted' > tS@r-a-k´i > dz 'waterline'

Compounding is stem-level and triggers the same set of rules as Der. suffixes. All other SLevel rules also apply in Der & Compounding, not Infl.
Do compounds show same processes as simple words?

Yup... Armenian phonology is stratal

- Derivational suffixes trigger stem-level phonology
- Inflectional suffixes trigger word-level phonology

E.g., destressed high vowel reduction is stem-level:
- `azniv` 'sincere' > `tSır` 'water'
- `Derazn@v-utjńun` 'sincerity' > `tS@r-ajın` 'aquatic'
- `Infazniv-ıe` 'from sincere (one)' > `tSur-ıov` 'with water'

Reduction applies in compounds too!
- `azniv + sird` 'sincere + heart' > `tSır + kί >dz` 'water + line'
- `azn@v-a-sird` 'sincere-hearted' > `tS@r-a-kί >dz` 'waterline'

Compounding is stem-level and triggers same set of rules as Der. suffixes.

All other SLevel rules also apply in Der & Compounding, not Infl
Do compounds show same processes as simple words?

Yup... Armenian phonology is stratal

- Derivational suffixes trigger stem-level phonology
- Inflectional suffixes trigger word-level phonology

E.g., destressed high vowel reduction is stem-level

\[\text{azn\`iv} \quad \text{‘sincere’} \quad \tilde{\text{t\text{"u}r}} \quad \text{‘water’}\]
Processes in Armenian

- Do compounds show same processes as simple words?
- Yup... Armenian phonology is stratal
 - Derivational suffixes trigger stem-level phonology
 - Inflectional suffixes trigger word-level phonology
- E.g., destressed high vowel reduction is stem-level

\[
\begin{align*}
\text{aznîv} & \quad \text{‘sincere’} & \quad \hat{t}\text{fúr} & \quad \text{‘water’} \\
\text{Der} & \quad \text{aznəv-utjún} & \quad \text{‘sincerity’} & \quad \hat{t}\text{fər-ajín} & \quad \text{‘aquatic’}
\end{align*}
\]
Processes in Armenian

- Do compounds show same processes as simple words?
- Yup... Armenian phonology is stratal
 - Derivational suffixes trigger stem-level phonology
 - Inflectional suffixes trigger word-level phonology
- E.g., destressed high vowel reduction is stem-level

\[
\begin{array}{ccc}
\text{aznǐv} & \text{‘sincere’} & \hat{t}\text{fúr} & \text{‘water’} \\
\text{Der} & \text{aznəv-utjúń} & \text{‘sincerity’} & \hat{t}\text{fər-ajín} & \text{‘aquatic’} \\
\text{Inf} & \text{azniv-é} & \text{‘from sincere (one)’} & \hat{t}\text{fur-óv} & \text{‘with water’} \\
\end{array}
\]
Do compounds show same processes as simple words?

Yup... Armenian phonology is stratal

- Derivational suffixes trigger stem-level phonology
- Inflectional suffixes trigger word-level phonology

E.g., destressed high vowel reduction is stem-level

<table>
<thead>
<tr>
<th>Stem</th>
<th>Derivational</th>
<th>Inflectional</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>azniv</code></td>
<td><code>aznəv-utjûn</code></td>
<td><code>azniv-é</code></td>
</tr>
<tr>
<td>‘sincere’</td>
<td>‘sincerity’</td>
<td>‘from sincere (one)’</td>
</tr>
<tr>
<td><code>tfûr</code></td>
<td><code>tfər-ajîn</code></td>
<td><code>tfur-ôv</code></td>
</tr>
<tr>
<td>‘water’</td>
<td>‘aquatic’</td>
<td>‘with water’</td>
</tr>
</tbody>
</table>

Reduction applies in compounds too!

<table>
<thead>
<tr>
<th>Compound</th>
<th>Stem</th>
<th>Derivational</th>
<th>Inflectional</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>azniv + sírd</code></td>
<td><code>azniv</code></td>
<td><code>sîrd</code></td>
<td><code>tfûr</code></td>
</tr>
<tr>
<td>‘sincere + heart’</td>
<td>‘sincere-hearted’</td>
<td>‘water + line’</td>
<td></td>
</tr>
<tr>
<td><code>aznəv-a-sírd</code></td>
<td><code>aznəv</code></td>
<td><code>sírd</code></td>
<td><code>tfər-a-kîdž</code></td>
</tr>
<tr>
<td>‘sincere-hearted’</td>
<td>‘waterline’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Do compounds show same processes as simple words?

Yup... Armenian phonology is stratal

- Derivational suffixes trigger stem-level phonology
- Inflectional suffixes trigger word-level phonology

E.g., destressed high vowel reduction is stem-level

\[
\begin{align*}
\text{aznǐv} & \quad \text{‘sincere’} & \quad \text{tʃỳr} & \quad \text{‘water’} \\
\text{Der} \quad \text{aznỳv-utjún} & \quad \text{‘sincerity’} & \quad \text{tʃỳr-a-jìn} & \quad \text{‘aquatic’} \\
\text{Inf} \quad \text{aznỳv-é} & \quad \text{‘from sincere (one)’} & \quad \text{tʃỳr-óv} & \quad \text{‘with water’}
\end{align*}
\]

Reduction applies in compounds too!

\[
\begin{align*}
\text{aznǐv} + \text{sìrd} & \quad \text{‘sincere + heart’} & \quad \text{tʃỳr} + \text{kìdz} & \quad \text{‘water + line’} \\
\text{aznỳv-a-sìrd} & \quad \text{‘sincere-hearted’} & \quad \text{tʃỳr-a-kìdz} & \quad \text{‘waterline’}
\end{align*}
\]

→ Compounding is stem-level and triggers same set of rules as Der. suffixes

* All other SLevel rules also apply in Der & Compounding, not Infl
So far, compounds show no paradoxes
Allomorphy in Armenian

- So far, compounds show no paradoxes – but they do in plurals.
Allomorphy in Armenian

- So far, compounds show no paradoxes – but they do in plurals.
- Simplex words: PL is -er if monosyllabic, -ner if polysyllabic

\[
\begin{array}{cccc}
\sigma & \sigma\sigma & \sigma\sigma\sigma + \\
\text{pág} & \text{panág} & \text{akarág} & \text{‘farm’} \\
\text{pag-ér} & \text{panag-nér} & \text{‘armies’} & \text{akarag-nér} & \text{‘farms’}
\end{array}
\]

* Allomorphy is simple syllable-counting, not about stress or feet
Paradoxical plurals

- Compounds are polysyllabic so they should always take -ner.
- It shouldn’t matter if STEM2 is a single σ or not.
Paradoxical Plurals

- Compounds are polysyllabic so they should always take -ner.
- It shouldn’t matter if STEM2 is a single σ or not.
- **Transparent** Plurals: PL counts entire polysyllabic compound

 \[
 \text{azniv} + \text{sird} \quad \text{‘sincere + heart’} \\
 \text{aznəv-a-sírd} \quad \text{‘sincere-hearted’} \\
 \underline{\text{aznəv-a-sird-ner}} \quad \text{‘sincere-hearted ones’}
 \]

* Underline domain of syllable counting
Paradoxical plurals

- Compounds are polysyllabic so they should **always** take -*ner*
- It shouldn’t matter if STEM2 is a single σ or not.
- **Transparent** Plurals: PL counts entire polysyllabic compound

 \[
 \text{azniv} + \text{sird} \quad \text{‘sincere + heart’} \\
 \text{aznəv-a-sírd} \quad \text{‘sincere-hearted’} \\
 \text{aznəv-a-sird-nér} \quad \text{‘sincere-hearted ones’}
 \]

* Underline domain of syllable counting

- **Paradoxical** Plurals: PL counts monosyllabic STEM2

 \[
 \text{tfýr} + \text{kídz} \quad \text{‘water + line’} \\
 \text{tfýr-a-kídz} \quad \text{‘waterline’} \\
 \text{tfýr-a-kídz-ér} \quad \text{‘waterlines’}
 \]
Paradoxical plurals

- Compounds are polysyllabic so they should always take -ner
- It shouldn’t matter if STEM2 is a single σ or not.
- **Transparent** Plurals: PL counts entire polysyllabic compound

 \[
 \text{azniv} + \text{sird} \quad \text{‘sincere + heart’} \\
 \text{aznəv-a-sírd} \quad \text{‘sincere-hearted’} \\
 \text{aznəv-a-sird}-nér \quad \text{‘sincere-hearted ones’}
 \]

* Underline domain of syllable counting

- **Paradoxical** Plurals: PL counts monosyllabic STEM2

 \[
 \text{tfúr} + \text{kipə} \quad \text{‘water + line’} \\
 \text{tfəɾ-a-kidz} \quad \text{‘waterline’} \\
 \text{tfəɾ-a-kidz}-ér \quad \text{‘waterlines’}
 \]

- Both have stem-level reduction between STEM1,2, not before PL suffix
Constituencies in Armenian

- Transparent plural: All constituencies match

 $azniv + sird$ ‘sincere + heart’

 $aznəv-a-sírd$ ‘sincere-hearted’

 $aznəv-a-sırd-ńér$ ‘sincere-hearted ones’

- Morpho ~ Process ~ Allomorphy
Constituencies in Armenian

- Transparent plural: All constituencies match

 \(\text{azniv} + \text{sird} \) \(\) ‘sincere + heart’

 \(\text{aznəv-a-sǐrd} \) ‘sincere-hearted’

 \(\text{aznəv-a-sǐrd-ner} \) ‘sincere-hearted ones’

- Morpho ~ Process ~ Allomorphy

<table>
<thead>
<tr>
<th>Morpho</th>
<th>Process</th>
<th>Allomorphy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLevel</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>SLevel</td>
<td>SLevel</td>
</tr>
<tr>
<td>STEM1</td>
<td>STEM2</td>
<td>PL</td>
</tr>
<tr>
<td>azniv</td>
<td>sird</td>
<td>-ner</td>
</tr>
<tr>
<td>aznəv-a-</td>
<td>sird</td>
<td>-ner</td>
</tr>
<tr>
<td>Allo</td>
<td>aznəv-a-sǐrd</td>
<td>-ner</td>
</tr>
</tbody>
</table>
Constituencies in Armenian

- Paradoxical plural: Only some match
 \[\text{tfúr} + \text{kidz} \quad \text{‘water + line’} \]
 \[\text{tfér-a-kídž} \quad \text{‘waterline’} \]
 \[\text{tfér-a-kidž-ér} \quad \text{‘waterlines’} \]

- (Morpho ~ Process) ≠ Allomorphy
Constituencies in Armenian

- Paradoxical plural: Only some match

 \[
 \tilde{t}fu\text{r} + \tilde{k}\text{idz} \quad \text{‘water + line’}
 \]

 \[
 \tilde{t}\text{f}\text{o}\text{r}-a-\tilde{k}\text{idz} \quad \text{‘waterline’}
 \]

 \[
 \tilde{t}\text{f}\text{o}\text{r}-a-\tilde{k}\text{idz-}\text{er} \quad \text{‘waterlines’}
 \]

- (Morpho ~ Process) \(\neq\) Allomorphy

<table>
<thead>
<tr>
<th>Morpho</th>
<th>Process</th>
<th>Allomorphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>WLevel</td>
<td></td>
</tr>
</tbody>
</table>

- **Compound**

<table>
<thead>
<tr>
<th>STEM1</th>
<th>STEM2</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{t}\text{f}\text{u}\text{r})</td>
<td>(\tilde{k}\text{idz})</td>
<td>(-\text{er})</td>
</tr>
</tbody>
</table>

- **SLevel**

<table>
<thead>
<tr>
<th>SLevel</th>
<th>SLevel</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{t}\text{f}\text{o}\text{r}-a-)</td>
<td>(\tilde{k}\text{idz})</td>
<td>(-\text{er})</td>
</tr>
</tbody>
</table>

- **Allo**

<table>
<thead>
<tr>
<th>Allo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{t}\text{f}\text{o}\text{r}-a-)</td>
</tr>
</tbody>
</table>
Table of Contents

- Preview

- Paradoxes
 - Classifying theories
 - Constituencies in paradoxes

- Armenian Data
 - Constituencies in Armenian
 - Bracketing paradox in Armenian

- Analyzing the Paradox

- Variation in Prosody

- Wrap-up
Endocentricity

- Paradox exists, but what’s the pattern?

1 Allen (1979)’s ‘IS A’ relation; well-known generalization in Armenian (Vaux, 1998).
Endocentricity

- Paradox exists, but what’s the pattern?
- Paradox is essentially about semantic endocentricity\(^1\)

Is the compound endocentric?

\[? \]

Is it hyponymic?

\[? \]

Is compound a type of STEM2?

\[\checkmark \quad \times \]

Paradoxical \quad Transparent

\(\text{waterline} \quad \text{IS A} \quad \text{line} \quad \text{sincere-hearted} \quad \text{IS not A} \quad \text{heart} \)

\(\text{tʃəra-a-kidz-er} \quad \text{kidz-er} \quad \text{aznəv-a-sird-ner} \quad \text{sird-er} \)

\(^1\)Allen (1979)’s ‘IS A’ relation; well-known generalization in Armenian (Vaux, 1998).
How robust is the paradox? How robust is endocentricity? Very!\(^2\)

\(^2\)(Donabédian, 2004)
How robust is the paradox? How robust is endocentricity? Very!2

Hyponymic \rightarrow endocentric \rightarrow paradoxical

Nominal

\[
\begin{align*}
X + N &= N & \text{\textasciitilde30\% lexicon} \\
\hat{t}ʃur + \hat{kidz} & \quad \text{‘water + line’} \\
X + \underline{N}-er & \quad \hat{ʃər}-a-\underline{kidz}-er & \quad \text{‘waterline(s)’}
\end{align*}
\]

2(Donabédian, 2004)
Compound classifications

- How robust is the paradox? How robust is endocentricity? Very!\(^2\)
- Hyponymic → endocentric → paradoxical

Nominal

X + N = N \(\hat{t}fur + kidz\) ‘water + line’
X + N-er \(\hat{t}f\text{ər-a-kidz-er}\) ‘waterline(s)’

Non-hyponymic → exocentric → transparent

Possessive

X + N = A \(azniv + sird\) ‘sincere + heart’
X + N-er \(azn\text{əv-a-sird-ner}\) ‘sincere-hearted (people)’

Deverbal

X + V\(_{\text{root}}\) = N/A \(antsrev + per-el\) ‘rain + to bring’
X + V-ner \(antsrev-a-per-ner\) ‘rain-bearing’

- Doesn’t matter what’s Stem1’s POS, semantics, morphological structure (appendix)

\(^2\)(Donabédian, 2004)
Head-marking in compounds

- Compound PL is head-marking: counting syllables in the semantic head

3Irregular inflection is usually optional for most irregular words
HEAD-MARKING IN COMPOUNDS

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!\(^3\)

\(^3\)Irregular inflection is usually optional for most irregular words
Compound PL is head-marking: counting syllables in the semantic head

Prediction: irregular plurals are inherited too!

\[
\begin{align*}
\text{mart} & \quad \text{‘man’} \\
\text{ajdz} + \text{mart} & \quad \text{‘goat + man’} \\
\text{ajdz-a-mart} & \quad \text{‘satyr’} \\
\text{mart-ig} & \quad \text{‘men’} \\
\text{ajdz-a-mart-ig} & \quad \text{‘satyrs’} \\
\text{ajdz-a-mart-er} & \quad \text{‘satyrs’}
\end{align*}
\]

Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)

\[\text{Irregular inflection is usually optional for most irregular words}\]
Head-marking in compounds

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!³

 \[
 \begin{align*}
 \text{mart} & \quad \text{‘man’} \quad \text{ajdz + mart} \quad \text{‘goat + man’} \\
 \text{ajdz-a-mart} & \quad \text{‘satyr’} \\
 \text{mart-ig} & \quad \text{‘men’} \quad \text{ajdz-a-mart-ig} \quad \text{‘satyrs’} \\
 \text{ajdz-a-mart-er} & \quad \text{‘satyrs’}
 \end{align*}
 \]

- Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)
 - All irregular morphology is inherited in endocentric compounds

 \[
 \begin{align*}
 \text{‘mother’} \\
 \text{majr} \\
 \text{PL} \quad \text{majr-er} \\
 \text{Reg GEN} \quad \text{majr-i} \\
 \text{Irreg GEN} \quad \text{mor}
 \end{align*}
 \]

³Irregular inflection is usually optional for most irregular words
Head-marking in compounds

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!

\[
\begin{align*}
\text{mart} & \quad \text{‘man’} & \quad \text{ajdz + mart} & \quad \text{‘goat + man’} \\
& & \quad \text{ajdz-a-mart} & \quad \text{‘satyr’} \\
\text{mart-ig} & \quad \text{‘men’} & \quad \text{ajdz-a-mart-ig} & \quad \text{‘satyrs’} \\
& & \quad \text{ajdz-a-mart-er} & \quad \text{‘satyrs’}
\end{align*}
\]

- Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)
 - All irregular morphology is inherited in endocentric compounds

\[
\begin{align*}
\text{‘mother’} & \quad \text{‘seal + mother’} \\
& \quad \text{‘god-mother’} \\
\text{majr} & \quad \text{gệnk-a-majr} \\
\text{PL} & \quad \text{majr-er} \\
\text{Reg GEN} & \quad \text{majr-i} \\
\text{Irreg GEN} & \quad \text{mor}
\end{align*}
\]

\[3\text{Irregular inflection is usually optional for most irregular words}\]
Head-marking in Compounds

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!\(^3\)

\[
\begin{align*}
\text{mart} & \quad \text{‘man’} \\
\text{ajdz} + \text{mart} & \quad \text{‘goat + man’} \\
\text{ajdz-a-mart} & \quad \text{‘satyr’} \\
\text{mart-ig} & \quad \text{‘men’} \\
\text{ajdz-a-mart-ig} & \quad \text{‘satyrs’} \\
\text{ajdz-a-mart-er} & \quad \text{‘satyrs’}
\end{align*}
\]

- Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)
 - All irregular morphology is inherited in endocentric compounds

\[
\begin{align*}
\text{‘mother’} & \quad \text{‘seal + mother’} \\
\text{‘god-mother’} & \quad \text{‘seal + mother’} \\
\text{majr} & \quad \text{gəŋk-a-majr} \\
\text{PL} & \quad \text{majr-er} \quad \text{gəŋk-a-majr-er} \\
\text{Reg GEN} & \quad \text{majr-i} \quad \text{gəŋk-a-majr-i} \\
\text{Irreg GEN} & \quad \text{mor}
\end{align*}
\]

\(^3\)Irregular inflection is usually optional for most irregular words
Head-marking in compounds

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!

\[
\begin{align*}
\text{mart} & \quad \text{‘man’} & \quad \text{ajdz + mart} & \quad \text{‘goat + man’} \\
\text{ajdz-a-mart} & \quad \text{‘satyr’} \\
\text{mart-ig} & \quad \text{‘men’} & \quad \text{ajdz-a-mart-ig} & \quad \text{‘satyrs’} \\
\text{ajdz-a-mart-er} & \quad \text{‘satyrs’}
\end{align*}
\]

- Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)
 - All irregular morphology is inherited in endocentric compounds

\[
\begin{align*}
\text{‘mother’} & \quad \text{‘seal + mother’} & \quad \text{‘god-mother’} \\
\text{majr} & \quad \text{gənk-a-majr} \\
\text{PL} & \quad \text{majr-er} & \quad \text{gənk-a-majr-er} \\
\text{Reg GEN} & \quad \text{majr-i} & \quad \text{gənk-a-majr-i} \\
\text{Irreg GEN} & \quad \text{mor} & \quad \text{gənk-a-mor}
\end{align*}
\]

3Irregular inflection is usually optional for most irregular words
Head-marking in compounds

- Compound PL is head-marking: counting syllables in the semantic head
- Prediction: irregular plurals are inherited too!³

 \[\text{mart} \quad \text{‘man’} \quad \text{adj} + \text{mart} \quad \text{‘goat + man’} \]
 \[\text{adj-a-mart} \quad \text{‘satyr’} \]
 \[\text{mart-ig} \quad \text{‘men’} \quad \text{adj-a-mart-ig} \quad \text{‘satyrs’} \]
 \[\text{adj-a-mart-er} \quad \text{‘satyrs’} \]

- Cross-linguistically, Head-marking is all-or-nothing (Stump, 1995)
 - All irregular morphology is inherited in endocentric compounds

 \[\text{‘mother’} \quad \text{‘seal + mother’} \quad \text{‘country + mother’} \]
 \[\text{‘god-mother’} \quad \text{‘capital’} \]
 \[\text{majr} \quad \text{gənk-a-majr} \quad \text{kayak-a-majr} \]
 \[\text{PL} \quad \text{majr-er} \quad \text{gənk-a-majr-er} \quad \text{kayak-a-majr-ner} \]
 \[\text{Reg GEN} \quad \text{majr-i} \quad \text{gənk-a-majr-i} \quad \text{kayak-a-majr-i} \]
 \[\text{Irreg GEN} \quad \text{mor} \quad \text{gənk-a-mor} \]

→ Semantic head is also Morphological head

³Irregular inflection is usually optional for most irregular words
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREVIEW</td>
</tr>
<tr>
<td>PARADOXES</td>
</tr>
<tr>
<td>- Classifying theories</td>
</tr>
<tr>
<td>- Constituencies in paradoxes</td>
</tr>
<tr>
<td>ARMENIAN DATA</td>
</tr>
<tr>
<td>- Constituencies in Armenian</td>
</tr>
<tr>
<td>- Bracketing paradox in Armenian</td>
</tr>
<tr>
<td>ANALYZING THE PARADOX</td>
</tr>
<tr>
<td>VARIATION IN PROSODY</td>
</tr>
<tr>
<td>WRAP-UP</td>
</tr>
</tbody>
</table>
Long-story short: Pl counts syllables in STEM2 if it’s the semantic head

- $\text{azniv} + \text{sird}$ ‘sincere + heart’
- aznəv-a-sírd ‘sincere-hearted’
- aznəv-a-sírd-nér

- $\text{tʃúr} + \text{kídz}$ ‘water + line’
- tʃər-a-kídz ‘waterline’
- tʃər-a-kídz-ér

How do we analyze the paradox?
Interim summary

- Long-story short: PL counts syllables in STEM2 if it’s the semantic head

 \[\text{azniv} + \text{sird} \quad \text{‘sincere + heart’} \quad \text{\(\tilde{t}f\urd\)r} + \text{\(\tilde{k}\idi\)z} \quad \text{‘water + line’} \]

 \[\text{azn\@v-a-s\@rd} \quad \text{‘sincere-hearted’} \quad \text{\(\tilde{t}\sigmar-a-k\idi\)dz} \quad \text{‘waterline’} \]

 \[\text{azn\@v-a-s\@rd-n\@r} \quad \text{\(\tilde{t}\sigmar-a-k\idi\)dz-\@r} \]

- How do we analyze the paradox?

- **Reminder**: some approaches are counter-cyclic if spell-out doesn’t match underlying morphology

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing/Merger</td>
<td>Head operations</td>
</tr>
<tr>
<td>Late Adjunction ...</td>
<td>Prosodic Phonology</td>
</tr>
</tbody>
</table>

- For Armenian...
Interim summary

- Long-story short: PL counts syllables in STEM2 if it’s the semantic head

 \[
 \text{azniv + sird} \quad \text{‘sincere + heart’} \quad \text{tfür + kídž} \quad \text{‘water + line’} \\
 \text{aznəv-a-sírd} \quad \text{‘sincere-hearted’} \quad \text{tfər-a-kídž} \quad \text{‘waterline’} \\
 \text{aznəv-a-sírd-nér} \\
 \]

- How do we analyze the paradox?

- Reminder: some approaches are counter-cyclic if spell-out doesn’t match underlying morphology

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing/Merger</td>
<td>Head operations</td>
</tr>
<tr>
<td>Late Adjunction ...</td>
<td>Prosodic Phonology</td>
</tr>
</tbody>
</table>

- For Armenian...

 😊 Counter-cyclic theory like Merger/Rebracketing can do the paradox, but not stratal phonology
Interim summary

- Long-story short: PL counts syllables in STEM2 if it’s the semantic head

 \[\text{azniv} + \text{sird} \] ‘sincere + heart’ \[\text{tʃúr} + \text{kidž} \] ‘water + line’

 \[\text{aznəv-a-sírd} \] ‘sincere-hearted’ \[\text{tʃeɾ-a-kidž} \] ‘waterline’

 \[\text{aznəv-a-sírd-nër} \] ‘sincere-hearted’ \[\text{tʃeɾ-a-kidž-ér} \] ‘waterline’

- How do we analyze the paradox?

- **Reminder**: some approaches are counter-cyclic if spell-out doesn’t match underlying morphology

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing/Merger</td>
<td>Head operations</td>
</tr>
<tr>
<td>Late Adjunction ...</td>
<td>Prosodic Phonology</td>
</tr>
</tbody>
</table>

- For Armenian...
 - Counter-cyclic theory like Merger/Rebracketing can do the paradox, but not stratal phonology
 - Cyclic ones like Head-Operations can do both
Morphological Rebracketing: PL is rebracketed with the head
Morphological Rebracketing: PL is rebracketed with the head
For exocentric, nothing special happens

Input

Countercyclic doesn’t work

‘sincere-hearted (PL)

MW

MS

PL

/azniv/ /sird/
Morphological Rebracketing: PL is rebracketed with the head
For exocentric, nothing special happens

\[
\begin{align*}
\text{\textbf{MW}}_{\text{PL}} & \\
\text{MS}_a & \\
\text{MS}_a & \quad \text{MS}_n & \quad \text{PL} \\
/\text{azniv}/ & \quad /\text{sird}/ \\
\end{align*}
\]

\begin{tabular}{ll}
Input & ‘sincere-hearted (PL) \\
Cycle 1 & Spell-out stems \(\text{azniv} + \text{sird}\) \\
& SLevel: stress & reduce \(\text{aznív} + \text{sírd}\)
\end{tabular}
Morphological Rebracketing: PL is rebracketed with the head

For exocentric, nothing special happens

\[\text{‘sincere-hearted (PL)} \]

\[\text{MW}_{\text{PL}} \]

\[\text{MS}_a \]

\[\text{MS}_a \quad \text{MS}_n \quad \text{PL} \]

\[/azniv/ \quad /sird/ \]

Input

Cycle 1 Spell-out stems \[azniv + sird \]

SLevel: stress & reduce \[azniv + sird \]

Cycle 2 Combine stems \[azniv-a-sird \]

SLevel: stress & reduce \[azn\text{v-a-sird} \]
COUNTER-CYCLIC DOESN’T WORK

- Morphological Rebracketing: PL is rebracketed with the head
- For exocentric, nothing special happens

‘sincere-hearted (PL)

MW

Input
Cycle 1 Spell-out stems
SLevel: stress & reduce
Cycle 2 Combine stems
SLevel: stress & reduce
Cycle 3 Spell-out PL
WLevel: stress

/azniv/ /sird/

azniv + sird
aznív + sírd
azněv-a-sírd
azněv-a-sírd-ner
azněv-a-sírd-nér
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric ‘waterlines’...
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric ‘waterlines’...
- Pl is rebracketed with STEM2

Input	Rebracketed
MW_{PL} | MW_{PL}
MS_n | MS_n
MS_n | MS_n
PL | PL

/ˈtʃɜr/ | /ˈkɪdʒ/ | /ˈtʃɜr/ | /ˈkɪdʒ/

‘water’ ‘line’ ‘water’ ‘line’
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric ‘waterlines’...

😊 PL is rebracketed with STEM2

<table>
<thead>
<tr>
<th>Input</th>
<th>Rebracketed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW<sub>PL</sub></td>
</tr>
<tr>
<td></td>
<td>MS<sub>n</sub></td>
</tr>
<tr>
<td></td>
<td>MS<sub>n</sub></td>
</tr>
<tr>
<td>MS<sub>n</sub></td>
<td>/tfur/</td>
</tr>
<tr>
<td>MS<sub>n</sub></td>
<td>/tfur/</td>
</tr>
</tbody>
</table>

‘water’ ‘line’ ‘water’ ‘line’

- Entire compound is now MWord instead of MStem

😊 can’t apply reduction on STEM1
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric...
 → can’t apply reduction on STEM1
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric...
 → can’t apply reduction on STEM1

Input
Cycle 1 Spell-out stems \(\tilde{t}f\acute{u}r + k\tilde{i}d\tilde{z} \)
 SLevel: stress & reduce \(\tilde{t}f\acute{u}r + k\tilde{i}d\tilde{z} \)
COUNTER-CYCLIC DOESN’T WORK

- Counter-cyclic can do exocentric, but for endocentric...
 → can’t apply reduction on STEM1

Input
Cycle 1 Spell-out stems \(\hat{t}f\text{ur} + \hat{k}\text{idz} \)
SLevel: stress & reduce \(\hat{t}\text{fúr} + \hat{k}\text{idz} \)
Cycle 2 Spell-out Pl \(\hat{t}\text{fúr} + \hat{k}\text{idz-er} \)
WLevel: stress \(\hat{t}\text{fúr} + \hat{k}\text{idz-ér} \)
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric...
- can’t apply reduction on STEM1

\[\begin{array}{c}
\text{Input} \\
\text{Cycle 1} & \text{Spell-out stems} & \text{Spell-out PL} \\
& \text{SLevel: stress & reduce} & \text{WLevel: stress} \\
& \text{Combine stems} &
\end{array}\]

\[\begin{array}{c}
\text{MS}_n & \text{MS}_n & \text{PL} \\
\text{MW}_{PL} & \text{MW}_{PL} \\
/\text{tfur}/ & /\text{kidz}/ \\
\end{array}\]
Counter-cyclic doesn’t work

- Counter-cyclic can do exocentric, but for endocentric...
 → can’t apply reduction on STEM1

Input

Cycle 1
- Spell-out stems: $tʃur + kidz$
- SLevel: stress & reduce: $tʃúr + kídz$

Cycle 2
- Spell-out PL: $tʃúr + kídz$-er
- WLevel: stress: $tʃúr + kídz$-ér

Cycle 3
- Combine stems: $tʃur$-a-$kídz$-ér
- WLevel: stress: *$tʃur$-a-$kídz$-ér
- *expect...: $tʃør$-a-$kídz$-ér
Counter-cyclic analyses correlate with phonological non-coherence

\[\text{happy} \rightarrow \text{háppy-er} \]

\[\text{un-happy} \rightarrow \text{ùn-háppy-er} \]

Intuitively, counter-cyclic analysis can’t work because they predict that

\[\text{Process} \sim \text{Allomorphy} \]

In Armenian compounds, crucially \(\text{Process} \neq \text{Allomorphy} \)

\[\rightarrow \text{Need cyclic approaches!} \]

\[\text{Morpho Process Allomorphy} \]

\[\text{pl} \rightarrow \text{pl-er} \]

\[\text{Compound Stem2} \rightarrow \text{ki>dz} \]

\[\text{Stem1} \rightarrow \text{tSur} \]

\[\text{WLevel} \rightarrow \text{SLevel} \rightarrow \text{SLevel} \rightarrow \text{Allo-er} \]

\[\text{ki>dz} \rightarrow \text{tS@r-a-} \]
Counter-cyclicity and non-coherence

- Counter-cyclic analyses correlate with phonological non-coherence
 - happy háppy-er
 - un-happy ùn-háppy-er
Counter-cyclicity and non-coherence

- Counter-cyclic analyses correlate with phonological non-coherence
 - *happy* *háp-y-er*
 - *un-happy* *ùn-háp-y-er*
- Intuitively, counter-cyclic analysis can’t work because they predict that Process \sim Allomorphy
Counter-cyclicity and non-coherence

- Counter-cyclic analyses correlate with phonological non-coherence
 - *happy* \(\rightarrow \) *háppy-er*
 - *un-happy* \(\rightarrow \) *ùn-háppy-er*

- Intuitively, counter-cyclic analysis can’t work because they predict that Process \(\sim \) Allomorphy

- In Armenian compounds, crucially Process \(\neq \) Allomorphy
 - Need cyclic approaches!

<table>
<thead>
<tr>
<th>Morpho</th>
<th>Process</th>
<th>Allomorphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>SLevel</td>
<td>Allo</td>
</tr>
<tr>
<td>STem1</td>
<td>STem2</td>
<td>PL</td>
</tr>
<tr>
<td>(\tilde{t}fur)</td>
<td>kidz</td>
<td>-er</td>
</tr>
<tr>
<td>SLevel</td>
<td>STLevel</td>
<td>Allo</td>
</tr>
<tr>
<td>(\tilde{t}f\text{@r-a-})</td>
<td>kidz</td>
<td>-er</td>
</tr>
<tr>
<td>WLevel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{t}f\text{@r-a-})</td>
<td>kidz</td>
<td>-er</td>
</tr>
</tbody>
</table>
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head
- PL is a head-operation
 - $PL(X + h) = X + PL(h)$
 - $PL \rightarrow -er / \left[\sigma \right]_h$
 - $PL \rightarrow -ner / \text{elsewhere}$

- Semantic Head h:
 - If simplex/exocentric, then $h=\text{WORD}$
 - if endocentric, then $h=\text{STEM2}$
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head
- PL is a head-operation
 - $PL(X + h) = X + PL(h)$
 - $PL \rightarrow -er / [\sigma]_h$
 - $PL \rightarrow -ner /$ elsewhere

- Semantic Head h:
 - If simplex/exocentric, then $h=$WORD
 - if endocentric, then $h=$STEM2

- Head-Operations are cyclic + work perfectly with stratal process
 - Exo ‘sincere-hearted’
 - Endo ‘waterlines’
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head
- PL is a head-operation
 - $\text{PL}(X + h) = X + \text{PL}(h)$
 - \(\text{PL} \rightarrow -er / \sigma \)h
 - \(\text{PL} \rightarrow -ner / \) elsewhere
- Semantic Head \(h\):
 - If simplex/exocentric, then \(h=\text{WORD}\)
 - If endocentric, then \(h=\text{STEM2}\)
- Head-Operations are cyclic + work perfectly with stratal process

Exo
- ‘sincere-hearted’
- ‘waterlines’

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out stems</th>
<th>SLevel: stress & reduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exo</td>
<td>azniv sird</td>
<td>tʃur kɪdʒ</td>
</tr>
<tr>
<td>Endo</td>
<td>aznív sírd</td>
<td>tʃúr kídʒ</td>
</tr>
</tbody>
</table>
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head
- PL is a head-operation
 - PL(X + h) = X + PL(h)
 - PL \rightarrow -er / [\sigma]_h_
 - PL \rightarrow -ner / elsewhere
- Semantic Head h:
 - If simplex/exocentric, then h=WORD
 - if endocentric, then h=STEM2

- Head-Operations are cyclic + work perfectly with stratal process

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out stems</th>
<th>Exo</th>
<th>Endo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLevel: stress & reduce</td>
<td>‘sincere-hearted’</td>
<td>‘waterlines’</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>Combine stems</td>
<td>azniv sird</td>
<td>tfur kidz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>azniv-a-sírd</td>
<td>tfúr-a-kídz</td>
</tr>
</tbody>
</table>
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head

- PL is a **head-operation**
 - $\text{PL}(X + h) = X + \text{PL}(h)$
 - $\text{PL} \rightarrow -er$ if simplex/exocentric, then $h=$ *word*
 - $\text{PL} \rightarrow -ner$ elsewhere if endocentric, then $h=$ *stem2*

- Semantic Head h:
 - If simplex/exocentric, then $h=$ *word*
 - If endocentric, then $h=$ *stem2*

- Head-Operations are cyclic + work perfectly with stratal process

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out stems</th>
<th>Exo</th>
<th>‘sincere-hearted’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLevel: stress & reduce</td>
<td>azniv sird</td>
<td>tfur kidz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle 2</th>
<th>Combine stems</th>
<th>Find h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[azniv-a-sird]$_h$</td>
<td>tfúr-a-[kidz]$_h$</td>
</tr>
</tbody>
</table>
What's a head-operation

- **Head-operation**: rule/morpheme looks for the semantic head

- **PL is a head-operation**
 - PL($X + h$) = $X + \text{PL}(h)$
 - PL → -er / $[\sigma]_h$)
 - PL → -ner / elsewhere

- **Semantic Head h:**
 - If simplex/exocentric, then h = \text{WORD}
 - If endocentric, then h = \text{STEM2}

- **Head-Operations are cyclic + work perfectly with stratal process**

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out stems</th>
<th>Exo</th>
<th>Endo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spell-out stems</td>
<td>‘sincere-hearted’</td>
<td>‘waterlines’</td>
</tr>
<tr>
<td>SLevel:</td>
<td>stress & reduce</td>
<td>\text{azniv} \text{sird}</td>
<td>\text{tʃur} \text{kidz}</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>Combine stems</td>
<td>\text{azniv-a-sird}</td>
<td>\text{tʃur-a-kidz}</td>
</tr>
<tr>
<td>Find h</td>
<td></td>
<td>$[\text{azniv-a-sird}]_h$</td>
<td>$[\text{tʃur-a-kidz}]_h$</td>
</tr>
<tr>
<td>SLevel:</td>
<td>stress & reduce</td>
<td>$[\text{aznəv-a-sírd}]_h$</td>
<td>$[\text{tʃər-a-[kidz]}_h$</td>
</tr>
</tbody>
</table>
What’s a head-operation

- Head-operation: rule/morpheme looks for the semantic head

- PL is a **head-operation**
 - PL($X + h$) = $X + PL(h)$
 - PL → `-er` / $[\sigma]_h$
 - PL → `-ner` / elsewhere

- Semantic Head h:
 - If simplex/exocentric, then $h =$ **WORD**
 - if endocentric, then $h =$ **STEM2**

- Head-Operations are cyclic + work perfectly with stratal process

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out stems</th>
<th>Exo</th>
<th>Endo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘sincere-hearted’</td>
<td>‘waterlines’</td>
<td></td>
</tr>
<tr>
<td>SLevel: stress & reduce</td>
<td>azniv sird</td>
<td>tfur kidz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘waterlines’</td>
<td>tfúr kidz</td>
<td>[azniv-a-sírd]$_h$</td>
<td>tfúr-a-[kidz]$_h$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle 3</th>
<th>Add PL</th>
<th>WLevel: stress</th>
<th>[azniv-a-sírd]$_h$-ner</th>
<th>tfúr-a-[kidz]$_h$-er</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘waterlines’</td>
<td>tfúr-a-kidz-ér</td>
<td>[azniv-a-sírd]$_h$-ner</td>
<td>tfúr-a-[kidz]$_h$-er</td>
</tr>
</tbody>
</table>
Lots of theories for paradoxes but...
Interim theory

- Lots of theories for paradoxes but...
 - Armenian doesn’t work with counter-cyclic theories
 - Armenian uses cyclic head-operations

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing</td>
<td>Head-operations</td>
</tr>
<tr>
<td>Merger</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Late Adjunction...</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Interim Theory

- Lots of theories for paradoxes but...
 - Armenian doesn’t work with counter-cyclic theories
 - Armenian uses cyclic head-operations

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing</td>
<td>Head-operations</td>
</tr>
<tr>
<td>Merger</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Late Adjunction...</td>
<td>✔</td>
</tr>
<tr>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

- Twist: variation data also shows use for *prosodic constituents*
Bisyllabic compounds

- Old data...

 - *azniv + sird* \(\text{‘sincere + heart’}\)
 - *\(\text{t}f\text{ur} + \text{ki}d\text{z}\)* \(\text{‘water + line’}\)

 - *azn\(\text{v}-\text{a}-\text{sird}\)-ner* \(\text{‘sincere-hearted’}\)
 - *\(\text{t}f\text{or}-\text{a}-\text{ki}d\text{z}\)-er* \(\text{‘waterlines’}\)

Twist:

- **Endo**
 - *kar + daS-el* \(\text{‘stone + to carve’}\)
 - *kar-daS* \(\text{‘stone carver’}\)
 - *kar-daS-ner* \(\text{‘stonecarvers’}\)

- **Exo**
 - *xa\(\text{t}S + \text{kar}\)* \(\text{‘cross + stone’}\)
 - *xa\(\text{t}S-kar\)* \(\text{‘cross-stone’}\)
 - *xa\(\text{t}S-kar-ner\)* \(\text{‘cross-stones’}\)
Bisyllabic compounds

- Old data...

 \[
 \text{azniv} + \text{sird} \quad \text{‘sincere + heart’} \\
 \text{aznəv-a-sird-ner} \quad \text{‘sincere-hearted’}
 \]

 \[
 \text{tfur} + \text{kidz} \quad \text{‘water + line’} \\
 \text{tfər-a-kidz-er} \quad \text{‘waterlines’}
 \]

- Twist:

 - All you saw were 3+-syllabic compounds
Bisyllabic compounds

- Old data...

 \[
 \text{azniv} + \text{sird} \quad \text{‘sincere} + \text{heart’} \quad \text{\(\tilde{t}fur\)} + \text{\(\tilde{ki}dz\)} \quad \text{‘water} + \text{line’}
 \]

 \[
 \text{azn\(\text{\v{a}}\)-a-sird-ner} \quad \text{‘sincere-hearted’} \quad \text{\(\tilde{t}\text{\(\text{\v{a}}\)r-a-\(\tilde{ki}dz\)}\)-er} \quad \text{‘waterlines’}
 \]

- Twist:

 - All you saw were 3+-syllabic compounds
 - Bisyllabic endo compounds show variation

Exo

\[
\text{kar} + \text{daf-el} \quad \text{‘stone} + \text{to carve’}
\]

\[
\text{kar-daf} \quad \text{‘stone carver’}
\]
Bisyllabic compounds

- Old data...
 - *azniv + sird* ‘sincere + heart’ *tfur + kidž* ‘water + line’
 - *aznəv-a-sird-ner* ‘sincere-hearted’ *tfər-a-kidž-er* ‘waterlines’

- Twist:
 - All you saw were 3+-syllabic compounds
 - Bisyllabic *endo* compounds show *variation*

 Exo
 - *kar + daf-el* ‘stone + to carve’
 - *kar-daf* ‘stone carver’

 kar-daf-ner
Bisyllabic compounds

- Old data...
 - \(\text{azniv} + \text{sird} \) ‘sincere + heart’ \(\text{tfur} + \text{kidz} \) ‘water + line’
 - \(\text{aznēv-a-sird-ner} \) ‘sincere-hearted’ \(\text{tfēr-a-kidz-er} \) ‘waterlines’

- Twist:
 - All you saw were 3+-syllabic compounds
 - Bisyllabic endo compounds show variation

Exo \hspace{0.5cm} ENDO
\(\text{kar} + \text{daf-el} \) ‘stone + to carve’ \(\text{xatj} + \text{kar} \) ‘cross + stone’
\(\text{kar-daf} \) ‘stone carver’ \(\text{xatj-kar} \) ‘cross-stone’
\(\underline{\text{kar-daf-ner}} \)
Bisyllabic compounds

- Old data...
 - *azniv + sird* ‘sincere + heart’ *tʃur + kidz* ‘water + line’
 - *aznv-a-sird-ner* ‘sincere-hearted’ *tʃər-a-kidz-er* ‘waterlines’

- Twist:
 - All you saw were 3+-syllabic compounds
 - Bisyllabic endo compounds show variation

 Exo
 - *kar + daf-el* ‘stone + to carve’
 - *kar-daf* ‘stone carver’

 Endo
 - *xatʃ + kar* ‘cross + stone’
 - *xatʃ-kar* ‘cross-stone’
 - *xatʃ-kar-er*
Bisyllabic compounds

- Old data...

 \[
 \begin{align*}
 \text{azniv} + \text{sird} & \quad \text{‘sincere + heart’} \\
 \text{tfur} + \text{kidz} & \quad \text{‘water + line’} \\
 \text{aznəv-a-sird-ner} & \quad \text{‘sincere-hearted’} \\
 \text{tfər-a-kidz-er} & \quad \text{‘waterlines’}
 \end{align*}
 \]

- Twist:

 - All you saw were 3+-syllabic compounds
 - Bisyllabic endo compounds show variation

 \[
 \begin{align*}
 \text{Exo} & \\
 \text{kar} + \text{daf-el} & \quad \text{‘stone + to carve’} \\
 \text{kar-daf} & \quad \text{‘stone carver’}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{Endo} & \\
 \text{yatʃ} + \text{kar} & \quad \text{‘cross + stone’} \\
 \text{yatʃ-ker} & \quad \text{‘cross-stone’} \\
 \text{yatʃ-ker-er} & \\
 \text{yatʃ-ker-ner} &
 \end{align*}
 \]

 → Bisyllabic endo compounds optionally get transparent plurals
Prosodic Heads

- Bisyllabic endo compounds optionally get transparent plurals
- Analysis: Prosodic Heads p
Bisyllabic endo compounds optionally get transparent plurals

Analysis: Prosodic Heads p

1) Map p

$[\ldots]_h \rightarrow (...)_p$
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p
 1) Map p
 $[...]_h \rightarrow (...)_p$
 2) Optional restructuring
 $\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p$
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads \(p \)

1) Map \(p \)
\[
[...]^h \rightarrow (...)_p
\]

2) Optional restructuring
\[
\#\sigma \ (\sigma)_p \rightarrow (\sigma \sigma)_p
\]

3) Count \(\sigma \)'s in \(p \)
PL \(\rightarrow -er/ (\sigma)_{p,h} _ \)
PL \(\rightarrow -ner/ \) elsewhere

Exo 'sincere-hearted' 'stone-carver'

\(\hat{t}far + sird + PL \) \(kar + da\hat{f}e + PL \)
Bisyllabic endo compounds *optionally* get transparent plurals

Analysis: Prosodic Heads p

1) Map p
$$[...]{h} \rightarrow (...)_{p}$$

2) Optional restructuring
$$\#\sigma (\sigma)_{p} \rightarrow (\sigma\sigma)_{p}$$

3) Count σ’s in p
$$\text{PL} \rightarrow -er / (\sigma)_{p,h}$$
$$\text{PL} \rightarrow -ner / \text{elsewhere}$$

<table>
<thead>
<tr>
<th>Exo</th>
<th>‘sincere-hearted’</th>
<th>‘stone-carver’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\ddot{a}r + s\ddot{i}d + \text{PL}$</td>
<td>$k\ddot{a}r + d\ddot{a}s - + \text{PL}$</td>
<td></td>
</tr>
</tbody>
</table>

Cycle 1 Spell-out & SLevel
- $az\acute{n} \acute{\i}v + s\ddot{i}r\ddot{d}$
- $k\acute{\i}r + d\ddot{a}s$
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals

- Analysis: Prosodic Heads p

 1) Map p
 \[[...]_h \rightarrow (...)_p \]

 2) Optional restructuring
 \[\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p \]

 3) Count σ’s in p
 PL \rightarrow -er / (\sigma)_{p,h}\
 PL \rightarrow -ner / elsewhere

<table>
<thead>
<tr>
<th>Exo</th>
<th>‘sincere-hearted’</th>
<th>‘stone-carver’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>Spell-out & SLevel</td>
<td>$tfar + sird + PL$</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>Combine & SLevel</td>
<td>$azniv + sird$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$aznov-a-sird$</td>
</tr>
</tbody>
</table>
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals

Analysis: Prosodic Heads p

1) Map p

\[[...]_h \rightarrow (...)_p \]

2) Optional restructuring

\[\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p \]

3) Count σ’s in p

- PL \rightarrow -er / (\sigma)_p,h
- PL \rightarrow -ner / elsewhere

<table>
<thead>
<tr>
<th>Exo</th>
<th>‘sincere-hearted’</th>
<th>‘stone-carver’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spell-out & SLevel</td>
<td>$t\tilde{f}ar + \text{sírd} + PL$</td>
<td>$\text{kar} + \text{daf}- + PL$</td>
</tr>
<tr>
<td>Combine & SLevel</td>
<td>anzəv-a-sírd</td>
<td>kar-dáf</td>
</tr>
<tr>
<td>$h?$</td>
<td>$[\text{anzəv-a-sírd}]_h$</td>
<td>$[\text{kar-dáf}]_h$</td>
</tr>
</tbody>
</table>
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p

1) Map p

2) Optional restructuring
 $\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p$

3) Count σ's in p
 $\text{PL} \rightarrow \text{-er} / (\sigma)_p,h$;
 $\text{PL} \rightarrow \text{-ner} / \text{elsewhere}$

<table>
<thead>
<tr>
<th>Exo</th>
<th>'sincere-hearted'</th>
<th>'stone-carver'</th>
</tr>
</thead>
<tbody>
<tr>
<td>tfar + sird + PL</td>
<td>kar + dáf + PL</td>
<td></td>
</tr>
<tr>
<td>aznív + sírd</td>
<td>kár + dáf</td>
<td></td>
</tr>
<tr>
<td>aznəv-a-sírd</td>
<td>kar-dáf</td>
<td></td>
</tr>
<tr>
<td>$[\text{anzəv-a-sírd}]_h$</td>
<td>$[\text{kar-dáf}]_h$</td>
<td></td>
</tr>
<tr>
<td>$(\text{aznəv-a-sírd})_p$</td>
<td>$(\text{kar-dáf})_p$</td>
<td></td>
</tr>
</tbody>
</table>

Cycle 1: Spell-out & SLevel

Cycle 2: Combine & SLevel

h?

p?

size?
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p
 1) Map p
 $$\ldots|h\rightarrow(\ldots)_p$$
 2) Optional restructuring
 $$\#\sigma(\sigma)_p\rightarrow(\sigma\sigma)_p$$
 3) Count σ’s in p
 PL
 $$\rightarrow-er/(\sigma)_p,h__$$
 PL
 $$\rightarrow-ner/\text{elsewhere}$$

<table>
<thead>
<tr>
<th>Exo</th>
<th>‘sincere-hearted’</th>
<th>‘stone-carver’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\text{far} + \text{sírd} + \text{PL}$</td>
<td>$k\text{ár} + d\text{áf}$</td>
<td></td>
</tr>
<tr>
<td>$azn\text{ív} + \text{sírd}$</td>
<td>$k\text{ár-dáf}$</td>
<td></td>
</tr>
<tr>
<td>$azn\text{év-a-sírd}$</td>
<td>$[k\text{ar-dáf}]_h$</td>
<td></td>
</tr>
<tr>
<td>$[anz\text{év-a-sírd}]_h$</td>
<td>$(k\text{ar-dáf})_p$</td>
<td></td>
</tr>
<tr>
<td>$azn\text{év-a-sírd}_p$</td>
<td>$(k\text{ar-dáf})_p$</td>
<td></td>
</tr>
<tr>
<td>‘sincere-heartedly’ ‘stone-carver’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cycle 1
 Spell-out & SLevel
- Cycle 2
 Combine & SLevel
- Cycle 3
 Add PL
Prosodic Heads

- Bisyllabic endo compounds optionally get transparent plurals
- Analysis: Prosodic Heads p
 1) Map h to p
 $[\ldots]_h \rightarrow (\ldots)_p$
 2) Optional restructuring
 $\#\sigma (\sigma)_p \rightarrow (\sigma\sigma)_p$
 3) Count σ’s in p
 PL $\rightarrow -er / (\sigma)_p,h$
 PL $\rightarrow -ner / elsewhere$

<table>
<thead>
<tr>
<th>ENDO</th>
<th>‘waterlines’</th>
<th>‘cross-stones’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\widehat{t}fur + kid\widehat{z} + PL$</td>
<td>$\widehat{xat}\widehat{f} + kar + PL$</td>
<td></td>
</tr>
</tbody>
</table>
Prosodic Heads

- Bisyllabic endo compounds \textit{optionally} get transparent plurals

Analysis: Prosodic Heads p

1) Map h to p
 \[\ldots_h \to (\ldots)_p \]

2) Optional restructuring
 \[\#\sigma (\sigma)_p \to (\sigma \sigma)_p \]

3) Count σ’s in p
 PL
 \[\to -er / (\sigma)_{p,h} _\]

 PL
 \[\to -ner / \text{elsewhere} \]

Endo

\begin{tabular}{l l l l}
\hline
\textbf{ENDO} & ‘waterlines’ & ‘cross-stones’ \\
\hline
\end{tabular}

\begin{tabular}{l l l l}
\hline
\textless tfur + kidz \textgreater + PL & \textless xatf \textgreater + kar + PL \\
\hline
\end{tabular}

Cycle 1 Spell-out & SLevel
\begin{tabular}{l l}
\hline
\textless tfúr + kidz \textgreater & \textless xátf \textgreater + kár \\
\hline
\end{tabular}
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p
 1) Map h to p $[...]_h \rightarrow (...)_p$
 2) Optional restructuring $\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p$
 3) Count σ’s in p PL $\rightarrow -er / (\sigma)_p,h _$

<table>
<thead>
<tr>
<th>ENDO</th>
<th>‘waterlines’</th>
<th>‘cross-stones’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tilde{t}\text{s}ur + \text{kidz} + PL$</td>
<td>$x\tilde{a}t\text{f} + \text{kar} + PL$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Spell-out & SLevel</th>
<th>$\tilde{t}\text{s}úr + \text{kidz}$</th>
<th>$x\tilde{a}t\text{f} + k\tilde{a}r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 2</td>
<td>Combine & SLevel</td>
<td>$\tilde{t}\text{s}\text{-}r-a\text{-}\text{kidz}$</td>
<td>$x\tilde{a}t\text{f}\text{-}k\tilde{a}r$</td>
</tr>
<tr>
<td></td>
<td>$h?$</td>
<td>$\tilde{t}\text{s}\text{-}r-a-[\text{kidz}]_h$</td>
<td>$x\tilde{a}t\text{f}\text{-}[\text{kar}]_h$</td>
</tr>
<tr>
<td></td>
<td>$p?$</td>
<td>$\tilde{t}\text{s}\text{-}r-a-(\text{kidz})_p$</td>
<td>$x\tilde{a}t\text{f}\text{-}(\text{kar})_p$</td>
</tr>
</tbody>
</table>
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p
 1) Map h to p $[...)_h \rightarrow (...)_p$
 2) Optional restructuring $\#\sigma (\sigma)_p \rightarrow (\sigma \sigma)_p$
 3) Count σ’s in p $PL \rightarrow -er / (\sigma)_p,h$ _
 $PL \rightarrow -ner /$ elsewhere

<table>
<thead>
<tr>
<th>ENDO</th>
<th>‘waterlines’</th>
<th>‘cross-stones’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{tʃu}r + \text{kidz} + PL$</td>
<td>$\text{xatʃ} + \text{kar} + PL$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Spell-out & SLevel</th>
<th>$\text{tʃúr} + \text{kidz}$</th>
<th>$\text{xátʃ} + \text{kár}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 2</td>
<td>Combine & SLevel</td>
<td>tʃọ-r-a-kídz</td>
<td>xatʃ-kár</td>
</tr>
<tr>
<td>h?</td>
<td>tʃọ-r-a-[kidz]_h</td>
<td>xatʃ-[kár]_h</td>
<td></td>
</tr>
<tr>
<td>p?</td>
<td>tʃọ-r-a-(kidz)_p</td>
<td>xatʃ-(kár)_p</td>
<td></td>
</tr>
<tr>
<td>size?</td>
<td></td>
<td>$\text{xatʃ-(kár)}_p, (\text{xatʃ-kár})_p$</td>
<td></td>
</tr>
</tbody>
</table>
Prosodic Heads

- Bisyllabic endo compounds *optionally* get transparent plurals
- Analysis: Prosodic Heads p
 1) Map h to p

 $$\begin{align*}
 ([...])_h & \rightarrow ([...])_p \\
 \end{align*}$$
 2) Optional restructuring

 $$\begin{align*}
 \#\sigma (\sigma)_p & \rightarrow (\sigma \sigma)_p \\
 \end{align*}$$
 3) Count σ’s in p

 $$\begin{align*}
 \text{PL} & \rightarrow \text{-er} / (\sigma)_{p,h} \\
 \text{PL} & \rightarrow \text{-ner} / \text{elsewhere} \\
 \end{align*}$$

<table>
<thead>
<tr>
<th>ENDO</th>
<th>‘waterlines’</th>
<th>‘cross-stones’</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\hat{\text{fur}} + \text{kidz} + \text{PL}$</td>
<td>$x\hat{\text{atf}} + \text{kár} + \text{PL}$</td>
<td></td>
</tr>
<tr>
<td>$t\hat{\text{fúr}} + \text{kidz}$</td>
<td>$x\hat{\text{átf}} + \text{kár}$</td>
<td></td>
</tr>
<tr>
<td>$t\hat{\text{fər-ə-kídz}}$</td>
<td>$x\hat{\text{atf}}-\text{kár}$</td>
<td></td>
</tr>
<tr>
<td>$t\hat{\text{fər-ə-[kídz]}}_h$</td>
<td>$x\hat{\text{atf-}[kár]}_h$</td>
<td></td>
</tr>
<tr>
<td>$t\hat{\text{fər-ə-(kidz)}}_p$</td>
<td>$x\hat{\text{atf-(kár)}}_p$</td>
<td></td>
</tr>
<tr>
<td>size?</td>
<td>$x\hat{\text{atf-(kár)}}_p, (x\hat{\text{atf}}-\text{kár})_p$</td>
<td></td>
</tr>
</tbody>
</table>

Cycle 1 Spell-out & SLevel
Cycle 2 Combine & SLevel
 $h?$
 $p?$
 size?
Cycle 3 Add PL
 $t\hat{\text{fər-a-kidz}}$
 $t\hat{\text{fər-a-kidz-ér}}$
 $x\hat{\text{atf-ker-ér}}, x\hat{\text{atf-ker-ner}}$
What is p?

- Prosodic Head p:
 - 'waterline(s)'
 - 'cross-stone(s)'

\[
\begin{align*}
\text{Prosodic Stem} & \quad \text{Prosodic Head} \\
\text{Foot} & \quad (\omega \text{ or } w) \\
\end{align*}
\]

- p can't be a Foot or PWord \rightarrow intermediate PStem
What is p?

- Prosodic Head p:
 - ‘waterline(s)’
 - ‘cross-stone(s)’

 \[\begin{array}{cc}
 \text{Prosodic Stem} & \text{Foot (F or } \Sigma) \\
 \text{Prosodic Word (w or w)} & \\
 \end{array} \]

- But what is p?
 - Prosodic Word (ω or w)

\[\begin{array}{cc}
 \text{Prosodic Head} & \text{Prosodic Word (w or w)} \\
 \text{Prosodic Stem} & \text{Foot (F or } \Sigma) \\
 \end{array} \]
What is p?

- Prosodic Head p:
 - ‘waterline(s)’
 - ‘cross-stone(s)’

- But what is p?
 - Prosodic Word (ω or w)
 - Prosodic Stem (s)
 - Foot (F or Σ)

- p can’t be a Foot or PWord \rightarrow intermediate PStem
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preview</td>
</tr>
<tr>
<td>Paradoxes</td>
</tr>
<tr>
<td>- Classifying theories</td>
</tr>
<tr>
<td>- Constituencies in paradoxes</td>
</tr>
<tr>
<td>Armenian data</td>
</tr>
<tr>
<td>- Constituencies in Armenian</td>
</tr>
<tr>
<td>- Bracketing paradox in Armenian</td>
</tr>
<tr>
<td>Analyzing the paradox</td>
</tr>
<tr>
<td>Variation in prosody</td>
</tr>
<tr>
<td>Wrap-up</td>
</tr>
</tbody>
</table>
In simplex words, PL is simple syllable-counting

\[\text{pag-er} \quad \text{‘yards’} \quad \text{panag-ner} \quad \text{‘armies’} \]

In compounds, PL counts \(\sigma \)’s in either Compound or STEM2

\[
\begin{align*}
\text{azniv + sird} & \quad \text{‘sincere + heart’} \\
\text{azniv-a-sird-ner} & \quad \text{‘sincere-hearted’}
\end{align*}
\]

\[
\begin{align*}
\text{tfur + kidz} & \quad \text{‘water + line’} \\
\text{tfør-a-kidz-er} & \quad \text{‘waterlines’}
\end{align*}
\]

Bracketing paradox:

- **MORPHO**: PL scopes over Compound
- **PHONO**: But sometimes PL looks *inside* the compound into STEM2
Wrap-up

- PL is head-marking:
 - Dissects different types of (nearly) isomorphic heads

<table>
<thead>
<tr>
<th>Semantic Head</th>
<th>Morphological Head</th>
<th>Prosodic Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocentric</td>
<td>Irregular Infl</td>
<td>Bisyllabic minimality</td>
</tr>
</tbody>
</table>

The Armenian paradox is unlike most other paradoxes...

- Allomorphy-Based
- Process-Based
- Analysis must be cyclic because of stratal phonology
- Popular counter-cyclic theories can't work

- Armenian uses a unique combination of some theories, and excludes most
 Counter-cyclic
 Cyclic
 Rebracketing
 Head-operations
 Merger
 Prosodic Phonology
 Late Adjunction
Wrap-up

- PL is head-marking:
 - Dissects different types of (nearly) isomorphic heads

<table>
<thead>
<tr>
<th>Semantic Head</th>
<th>Morphological Head</th>
<th>Prosodic Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocentric</td>
<td>Irregular Infl</td>
<td>Bisyllabic minimality</td>
</tr>
</tbody>
</table>

- The Armenian paradox is unlike most other paradoxes...
 - Allomorphy-Based PHONO ≠ Process-Based PHONO
 - Analysis must be cyclic because of stratal phonology
 - Popular counter-cyclic theories can’t work
Wrap-up

- PL is head-marking:
 - Dissects different types of (nearly) isomorphic heads
 | Semantic Head | Morphological Head | Prosodic Head |
 | Endocentric | Irregular Infl | Bisyllabic minimality |
- The Armenian paradox is unlike most other paradoxes...
 - Allomorphy-Based $\text{PHONO} \neq$ Process-Based PHONO
 - Analysis must be cyclic because of stratal phonology
 - Popular counter-cyclic theories can’t work
- Armenian uses a unique combination of some theories, and excludes most

<table>
<thead>
<tr>
<th>Counter-cyclic</th>
<th>Cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebracketing</td>
<td>Head-operations</td>
</tr>
<tr>
<td>Merger</td>
<td>Prosodic Phonology</td>
</tr>
<tr>
<td>Late Adjunction</td>
<td></td>
</tr>
<tr>
<td>\times</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>
Appendix

- More info on....
 1. prosodic constituent in compounding [46]
 2. syllable-counting in plurals [53]
 3. types of compounds w.r.t. the paradox [54]
 4. variation data & productivity [63]
 5. morphological structure of compounds [68]
$p = \text{Foot?}$

- $p = \text{Foot?}$

\[\begin{array}{c}
\text{F} & \text{F} \\
\text{xatʃ} & \text{kar} & -er \\
\text{F} & \text{xatʃ - kar} & -ner
\end{array} \]
\[p = \text{Foot?} \]

- \(p = \text{Foot?} \)

- Nope!... Armenian has initial secondary stress
$p = \text{Foot?}$

- $p = \text{Foot?}$

\[
\begin{array}{c}
\text{w} \\
\text{F} \quad \text{F} \\
\text{xatʃ} \quad \text{kar} \quad -\text{er} \\
\end{array}
\quad
\begin{array}{c}
\text{w} \\
\text{F} \\
\text{xatʃ} - \text{kar} \quad -\text{ner} \\
\end{array}
\]

- Nope!... Armenian has initial secondary stress
- Above words *always* have two feet + p is higher

Singular Paradoxical Transparent

\[
\begin{array}{c}
\text{w} \\
\text{?} \quad \text{?} \\
\text{F} \quad \text{F} \\
\text{xatʃ} \quad \text{kár} \\
\end{array}
\quad
\begin{array}{c}
\text{w} \\
\text{？} \\
\text{F} \quad \text{F} \\
\text{xatʃ} \quad \text{kár} \quad + -\text{er} \\
\end{array}
\quad
\begin{array}{c}
\text{w} \\
\text{p} \\
\text{F} \quad \text{F} \\
\text{xatʃ} \quad \text{kár} \quad + -\text{ner} \\
\end{array}
\]
$p = \text{Foot?}$

- Clearer in prefixed words
$p = \text{Foot?}$

- Clearer in prefixed words
- Prefix \textit{an-} marks negation + secondary stressed + always counted

<table>
<thead>
<tr>
<th>Base</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG: hám ‘taste’</td>
<td>àn-hám ‘tasteless’</td>
</tr>
</tbody>
</table>
$p = \text{Foot?}$

- Clearer in prefixed words
- Prefix *an*- marks negation + secondary stressed + always counted

<table>
<thead>
<tr>
<th>Base</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG: $h\acute{a}m$ ‘taste’</td>
<td>$\acute{a}n$-$h\acute{a}m$ ‘tasteless’</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
h\acute{a}m
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array{
\[p = \text{PWord?} \]

- \(p = \) a recursive PWord?

\[
\begin{array}{c}
\text{\texttt{xàtʃ} } \quad \text{\texttt{kár} } \quad \text{\texttt{-er}} \\
\text{\texttt{xàtʃ} } \quad \text{\texttt{kár} } \quad \text{\texttt{-ner}}
\end{array}
\]
\(p = \text{PWord}\)?

- \(p = \) a recursive PWord?

Nope because stem-level processes apply across these ‘word’ boundaries
\(p = \text{PWord?} \)

- Stem-level processes apply in Der + Comp but not inflection

 \[
 \begin{array}{ll}
 \text{Der} & t\text{f}ur-\text{ajín} & \text{aquatic} \\
 \text{Inf} & tfūr-óv & \text{with water} \\
 \end{array}
 \]
Stem-level processes apply in Der + Comp but not inflection

Der $tS\acute{\text{or}}$-ajín ‘aquatic’
Inf $tS\acute{\text{ur}}$-$\acute{o}\hspace{0.1em}v$ ‘with water’
Comp $tS\acute{\text{ur}}$ + $h\acute{\text{ór}}$ ‘water + well’
 $tS\acute{\text{or}}$-$h\acute{\text{ór}}$ ‘water-well’
 $tS\acute{\text{or}}$-hor-er ‘water-wells’
 $tS\acute{\text{or}}$-hor-ner ‘water-wells’
\(p = \text{PWord?} \)

- Stem-level processes apply in Der + Comp but not inflection
 - Der: \(\widehat{\text{tʃúr}} \) ‘water’
 - Inf: \(\widehat{\text{tʃur-óv}} \) ‘with water’
 - Comp: \(\widehat{\text{tʃúr + hór}} \) ‘water + well’
 - \(\widehat{\text{tʃɔr-hór}} \) ‘water-well’
 - \(\widehat{\text{tʃɔr-hor-er}} \) ‘water-wells’
 - \(\widehat{\text{tʃɔr-hor-ner}} \) ‘water-wells’

- Weird if \(p \) is a word-boundary because stem-level processes apply across it
What is p

$p \neq F$

$F \quad F$

$\text{xtjf} \quad \text{kar}$

w

$p \neq W$

w

w

w

$p \neq W$

w

w

w

$F < p < W$

$\text{xtjf} \quad \text{kar}$

w

$F \quad F$

w

$\text{xtjf} \quad \text{kar}$

w

$\text{xtjf} \quad \text{kar}$

$\text{xtjf} \quad \text{kar}$
Prosodic Stems

- $p = \text{Prosodic Stem } s$?
- Tradition: PWord is smallest morphologically-derived constituents
Prosodic Stems

- $p =$ Prosodic Stem s?
- Tradition: PWord is smallest morphologically-derived constituents
- But: some agglutinative languages show need for a smaller one
 - Intonational Phrase (ι)
 - Phonological Phrase (ϕ)
 - Prosodic Word (ω or PWord)
 - Prosodic Stem (PStem)
 - Foot (F or Σ)
What is p?

$p \neq F$

\[
\begin{array}{c}
p \neq W \\
\text{w} \\
\text{F} \\
\text{xat}\hat{f} \quad \text{kar} \\
\text{w} \\
\text{F} \\
\text{xat}\hat{f} - \text{kar}
\end{array}
\]

$F < (p=S) < W$

\[
\begin{array}{c}
\text{w} \\
\text{s} \\
\text{F} \\
\text{xat}\hat{f} \quad \text{kar} \\
\text{w} \\
\text{s} \\
\text{F} \\
\text{xat}\hat{f} \quad \text{kar}
\end{array}
\]
Syllable-counting

- Simple syllable-counting

<table>
<thead>
<tr>
<th>CV</th>
<th>σ</th>
<th>σ-er</th>
<th>σσ⁺</th>
<th>σσ⁺-ner</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>tsi</td>
<td>tsi[j]-er</td>
<td>mekena</td>
<td>mekena-ner</td>
</tr>
<tr>
<td>CVC</td>
<td>pat</td>
<td>pat-er</td>
<td>dʒagad</td>
<td>dʒagad-ner</td>
</tr>
<tr>
<td>CVCC</td>
<td>pand</td>
<td>pand-er</td>
<td>aʃxadank</td>
<td>aʃxadank-ner</td>
</tr>
<tr>
<td>CVCCC</td>
<td>bartk</td>
<td>bartk-er</td>
<td>lusantsk</td>
<td>lusantsk-ner</td>
</tr>
</tbody>
</table>

CV: monosyllabic words
CVC: disyllabic words
CVCC: trisyllabic words
CVCCC: tetrasyllabic words

- 'horses'
- 'machines'
- 'ducks'
- 'foreheads'
- 'prisons'
- 'works'
- 'debts'
- 'margins'
Nominal compound: X+N=N

- Hyponymic → Endocentric → Paradoxical Plural

\[\text{antsrev} + \text{tjur} \quad \text{‘rain + water’} \]
\[\text{antsrev-a-tjur-er} \quad \text{‘rain water(s)’} \]

- Doesn’t matter what’s relationship between STEM1 & STEM2

<table>
<thead>
<tr>
<th>2 of 1</th>
<th>arev + joy</th>
<th>‘sun + ray’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arev-a-joy-er</td>
<td>‘sun-ray(s)’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 made from 1</th>
<th>medaks + kork</th>
<th>‘silk + carpet’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>medaks-a-kork-er</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 in 1</th>
<th>kedin + xorf</th>
<th>‘ground + pit’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kedn-a-xorf-er</td>
<td>‘ditch(es)’</td>
</tr>
</tbody>
</table>
Nominal compound

- Nominal compound: $X + N = N$
 - Hyponymic → Endocentric → Paradoxical Plural
 - $antsrev + t\text{f}ur$ ‘rain + water’
 - $antsrev-a-t\text{f}ur-er$ ‘rain water(s)’

- Doesn’t matter what’s POS of STEM1

<table>
<thead>
<tr>
<th>POS</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$don + \text{d}z\text{ar}$</td>
<td>‘holiday + tree’</td>
</tr>
<tr>
<td></td>
<td>$don-a-\text{d}z\text{ar}-er$</td>
<td>‘Christmas tree(s)’</td>
</tr>
<tr>
<td>Adj</td>
<td>$nax + hajr$</td>
<td>‘first + father’</td>
</tr>
<tr>
<td></td>
<td>$nax-a-hajr-er$</td>
<td>‘forefather(s)’</td>
</tr>
<tr>
<td>INF</td>
<td>$kord\text{z}-el + gerb$</td>
<td>‘to work + manner’</td>
</tr>
<tr>
<td></td>
<td>$kord\text{z}-el-a-gerb-er$</td>
<td>‘strategy’</td>
</tr>
<tr>
<td>V root</td>
<td>$a\text{xad}-il + var\text{ts}$</td>
<td>‘to work + reward’</td>
</tr>
<tr>
<td></td>
<td>$a\text{xad}-a-var\text{ts}-er$</td>
<td>wage(s)</td>
</tr>
</tbody>
</table>
• Possessive compound: X+N=A

 • Non-hyponymic → Exocentric → Transparent Plural

 \[
 \text{tfar + sird} \quad '\text{evil + heart}'
 \]

 \[
 \text{tfar-a-sird-ner} \quad '\text{evil-hearted (people)}'
 \]

• Doesn’t matter what’s POS of STEM1

<table>
<thead>
<tr>
<th>POS</th>
<th>Example</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj</td>
<td>\text{tetev + kajl}</td>
<td>‘light + footstep’</td>
</tr>
<tr>
<td></td>
<td>\text{tetev-a-kajl-ner}</td>
<td>‘light-footed (people)’</td>
</tr>
<tr>
<td>Noun</td>
<td>\text{arjun + kujn}</td>
<td>‘blood + color’</td>
</tr>
<tr>
<td></td>
<td>\text{arjun-a-kujn-ner}</td>
<td>‘blood-colored (people)’</td>
</tr>
<tr>
<td>V root</td>
<td>\text{xeyt-el + tsajn}</td>
<td>‘to strangle + voice’</td>
</tr>
<tr>
<td></td>
<td>\text{xeyt-a-tsajn-ner}</td>
<td>‘strangled-voiced (people)’</td>
</tr>
</tbody>
</table>
Verbs and deverbal compounds

Verb
√ + TH + T/Agr

Deverbal compound?
X + V_root

per -e -l
‘to bring’

Deverbal compounds ~ English synthetic compounds

- Argument structure
- BUT no overt suffix
- Bare verbal root, similar to Romance compounds

What about the bracketing paradox?
Deverbal compound

- Deverbal compound: \(X + V_{\text{root}} = \text{N/A} \)
 - Non-hyponymic → Exocentric → Transparent
- Doesn’t matter what’s POS of STEM1

<table>
<thead>
<tr>
<th>POS</th>
<th>Example</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>manug + var3-el</td>
<td>‘child + ti instruct’</td>
</tr>
<tr>
<td></td>
<td>mang-a-var3-ner</td>
<td>‘school-teacher(s)’</td>
</tr>
<tr>
<td>Adj</td>
<td>lav + des-nel</td>
<td>‘good + to see’</td>
</tr>
<tr>
<td></td>
<td>lav-a-des-ner</td>
<td>‘optimist(s)’</td>
</tr>
<tr>
<td>V root</td>
<td>hajhoj-el + sir-el</td>
<td>‘to swear + to love’</td>
</tr>
<tr>
<td></td>
<td>hajhoj-a-ser-ner</td>
<td>‘lover(s) of swearing’</td>
</tr>
</tbody>
</table>
Deverbal compound

- Deverbal compound: $X + V_{\text{root}} = \text{N/A}$
 - Non-hyponymic \rightarrow Exocentric \rightarrow Transparent
- Type of argument structure doesn’t matter

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obj + Active</td>
<td>$\text{hoy} + \text{kor}_\text{dz-el}$</td>
<td>‘earth + to work’</td>
</tr>
<tr>
<td></td>
<td>hos-a-kordz-ner</td>
<td>‘farmer(s)’</td>
</tr>
<tr>
<td>Adv + Intrans</td>
<td>$\text{jergar} + \text{dev-el}$</td>
<td>‘long + to last’</td>
</tr>
<tr>
<td></td>
<td>jergar-a-dev-ner</td>
<td>‘long-lasting (things)’</td>
</tr>
<tr>
<td>Subj + Passive</td>
<td>$\text{vodn} + \text{gox-vil}$</td>
<td>‘foot + to be trodden’</td>
</tr>
<tr>
<td></td>
<td>vodn-a-gox-ner</td>
<td>‘foot-trodden (things)’</td>
</tr>
<tr>
<td>Instr + Passive</td>
<td>$\text{jergat} + \text{kam-vil}$</td>
<td>‘iron + to be nailed’</td>
</tr>
<tr>
<td></td>
<td>jergat-a-kam-ner</td>
<td>‘iron-nailed (things)’</td>
</tr>
<tr>
<td>Adv + Passive</td>
<td>$\text{tæzvar} + \text{mars-vil}$</td>
<td>‘hard + to be digested’</td>
</tr>
<tr>
<td></td>
<td>tæzvar-a-mars-ner</td>
<td>‘indigestible (things)’</td>
</tr>
</tbody>
</table>
The bracketing paradox isn’t a fossilized unproductive rule
Productivity of Paradox

- The bracketing paradox isn’t a fossilized unproductive rule
- Most compounds are nominal, possessive, or deverbal (90+%)
- Paradox is *productive* to new types of constructions
Productivity of Paradox

- The bracketing paradox isn’t a fossilized unproductive rule
- Most compounds are nominal, possessive, or deverbal (90+%)
- Paradox is *productive* to new types of constructions
- **Adjectival Compounds** are a new category
 - Rare, but exist and getting slowly more popular
 - Hyponymic → endocentric → paradoxical

\[
\begin{align*}
derev + xid & \quad \text{‘leaf + dense’} \\
derev-a-xid & \quad \text{‘dense with leaves’} \\
derev-a-xid-er & \quad \text{‘dense things with leaves’}
\end{align*}
\]
Productivity of Paradox

- The bracketing paradox isn’t a fossilized unproductive rule
- Paradox is psycholinguistically real and active
Productivity of Paradox

- The bracketing paradox isn’t a fossilized unproductive rule
- Paradox is psycholinguistically real and active
- **Ambiguity:**
 - Some pairs of STEM1 + STEM2 could get either an endo vs. exo meaning
 - One meaning is established, another is novel
 - Plural matches the meaning

\[
\begin{align*}
garmir &+ tev & \text{‘red + wing’} \\
garmr-a-tev & & \text{‘red-winged’ OR ‘red wings’} \\
garmr-a-tev-ner & & \text{‘red-winged things’} \\
garmr-a-tev-er & & \text{‘red wings’}
\end{align*}
\]
Variation in compounds

- Simple story:
 - Endocentric → Paradoxical
 - Exocentric → Transparent

- Limited variation and deviations (appendix)

<table>
<thead>
<tr>
<th>Gaining paradoxical plural</th>
<th>Losing paradoxical plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaining new senses</td>
<td>Semantic bleaching</td>
</tr>
<tr>
<td>Gaining animacy</td>
<td>Become metaphorical</td>
</tr>
<tr>
<td>Loanword adaptation</td>
<td>Grammaticalization</td>
</tr>
<tr>
<td>New compound types</td>
<td>Lexicalization</td>
</tr>
<tr>
<td></td>
<td>Prosodic structure</td>
</tr>
</tbody>
</table>
Is it morphological?

- My story: plural counting depends on semantic heads
- Alternative:
 - Not semantics, just morphology
 - It’s a morphological quirk of *nominal compounds*
 - PL counts σ of STEM2 iff nominal compound

<table>
<thead>
<tr>
<th>STEM2</th>
<th>Nominal</th>
<th>Possessive</th>
<th>Deverbal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{t}fur$</td>
<td>$sird$</td>
<td>$kordz$-el</td>
<td></td>
</tr>
<tr>
<td>‘water’</td>
<td>‘heart’</td>
<td>‘to work’</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMP PL</th>
<th>ant\hat{s}rev-a-$\hat{t}fur$-er</th>
<th>$\hat{t}far$-a-$sird$-ner</th>
<th>hats-a-$kordz$-ner</th>
</tr>
</thead>
</table>

- Looks attractive, but won’t work
Is it morphological?

- Alternative: PL counts σ iff nominal compound
- Doesn’t work because...

1. Not every nominal compound gets a paradoxical plural
 - Semantic bleaching: if meaning is opaque, get transparent plural
 \[
 \begin{array}{cccc}
 \text{STEM1} & \text{STEM2} & \text{COMP} & \text{PL} \\
 \text{dzəx-e-l} & xod & \text{dzəx-a-xod} & \text{dzəx-a-xod-ner} \\
 \end{array}
 \]
 ‘to smoke’ ‘grass’ ‘tobacco’
 - Find variation when compound has transparent vs. opaque metaphorical meanings

2. Adjectival compounds are hyponymic and paradoxically pluralized
 - Rare, but exist and getting slowly more popular
 \[
 \begin{array}{cccc}
 \text{STEM1} & \text{STEM2} & \text{COMP} & \text{PL} \\
 \text{derev} & xid & \text{derev-a-xid} & \text{derev-a-xid-er} \\
 \end{array}
 \]
 ‘hole’ ‘dense’ ‘dense with leaves’

3. More shifts in loanwords, lexicalization, etc.
Morphological structure

- Analysis is agnostic to any specific tree-structure for compounds
- Endo nominal *rain-water*: antsrev-a-t∫ur

```plaintext
Concatenation

Conc + labels

Complex
```

```
N

N

N

antsrev t∫ur

√

n1

n2

n3

antsrev ∅ t∫ur ∅ ∅

antisrev ∅ t∫ur ∅

antsrev ∅ t∫ur ∅
```
Morphological structure

- Analysis is agnostic to any specific tree-structure for compounds
- Exo possessive *evil-hearted*: ṭjar-a-sird

Concatenation

```
  A
 /   \
A     N
 |     |
|      |
|      |
|      |
τjar   sird
```

Conc + labels

```
  Conc
 /   \
 a1   n2
 |     |
|     |
|     |
√   a1   √   n2
 |     |     |
|     |     |
|     |     |
τjar   τjar   τjar
          ∅   ∅   ∅
sird     sird   sird
 ∅     ∅     ∅
```

Complex

```
  Complex
 /   \
 a1   n2
 |     |
|     |
|     |
√   a1   √   n2
 |     |     |
|     |     |
|     |     |
τjar   τjar   τjar
          ∅   ∅   ∅
sird     sird   sird
 ∅     ∅     ∅
Morphological structure

- Analysis is agnostic to any specific tree-structure for compounds
- Exo deverbal *rain-bearing*: antsrev-a-per (*per-el* ‘to bring)
• Analysis is agnostic to any specific tree-structure for compounds
• Exo deverbal *rain-bearing*: *antsrev-a-per* (< *per-el* ‘to bring’)


