Probing Active Sites in CuₓPdᵧ Cluster Catalysts by Machine-Learning-Assisted X-ray Absorption Spectroscopy

Yang Liu,‡ Avik Halder,‡ Soenke Seifert,‡ Nicholas Marcella, Stefan Vajda,*, and Anatoly I. Frenkel*

1. INTRODUCTION

Obtaining design rules for novel materials with desired performance, as a challenge toward a general goal of rational design, must rely on the knowledge of the materials’ structure—activity relationships.1−3 Many novel materials, such as nonmetal,4−6 metal-based,7,8 and metal oxide materials,9,10 show unique performance at the nanoscale level. However, their structure—activity relationship is often difficult to extract by direct measurements because of the limitation of many structural probes11 that can be applied only ex situ, and/or in restrictive environments, such as, for example, ultrahigh vacuum.12 In addition, the understanding of structure—activity relationship requires to identify structure in working (operando) conditions, when a system, for example, a catalyst, an adsorbent, or an actuator, performs its work.13−15

Of those methods that are capable of determining nanoscale structure, X-ray absorption fine structure (XAFS) spectroscopy stands out. XAFS is an element-specific technique, now routinely performed under in situ/operando conditions. It provides the atomic level information including local structure details, oxidation state, and the dynamic properties of selected atomic species.16−19 XAFS comprises two parts of the X-ray absorption coefficient measured in the energy range corresponding to the photoexcitation of the core electron in the X-ray absorbing atom: X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The X-ray absorption fine structure in the XANES region, within 30 eV below and ~40 eV above the absorption edge, is produced because of the transition of the core lever electron to the unoccupied states within the absorbing and the multiple-scattering effects.20−22 EXAFS oscillations, extending ∼1000−1500 eV past the absorption edge, are explained by the interference of the outgoing and incoming photoelectron waves.23−25 As a result, both EXAFS and XANES encode the local structural information around the absorbing atoms and enable structural investigation for a large range of materials, with a particular utility for nanomaterials.26,27

In this work, we focus on two topics of central interest in catalysis research. The first one is to determine the structure of the active site in multicomponent systems, the main goal of this study. The second purpose is to establish structure—activity relationship for such catalysts in reactions of practical relevance. For the latter, we have chosen the industrially relevant reactions of oxidative dehydrogenation and selective oxidation to dehydrogenate propane or perform its partial oxidation. Palladium is known as one of most active catalyst for automotive exhaust,28 but there have also been studies reporting on the dehydrogenation propensities of Pd and its...
alloys. At the same time, although often impeded with lower activity, copper showed a potential for use in both dehydrogenation as well as selective partial oxidation reactions. Optimizing the catalysts for these reactions requires understanding the nature of their activity which, in turn, relies on the knowledge of active species and active sites, as the structure and oxidation state of catalytically active species may evolve in reaction conditions. We zero in on the size- and composition—selected monometallic Pd, Cu and bimetallic Cu\textsubscript{x}Pd\textsubscript{y} clusters, prepared with atomic precision, for two reasons. First, our hypothesis for identifying a highly active and selective catalyst is based on the exploitation of a potential symbiotic effect of a highly active Pd and a more selective Cu component. Second, these materials are chosen as part of the search of affordable replacement for the precious metals in part or in entirety, as demonstrated for example in refs. In structural studies of size-selected clusters deposited on flat support, grazing incidence XANES (GIXANES) has been shown to contain information about the clusters’ structure, oxidation states and their changes in reaction conditions. GIXANES data analysis was limited, until recently, to the linear algebra methods, such as linear combination analysis with experimental standards. A recently developed machine learning-assisted interpretation of XANES spectra (ML-XANES) in monometallic Cu clusters and their oxides was shown to be useful for their structural analysis. For bimetallic catalysts at the size scale of a few nanometers, both ML-XANES and ML-EXAFS were successfully used for their structural analysis. In this work, and in other such systems and processes, where the catalysts undergo phase changes during the in situ XANES experiments, a combination of several structures that may coexist in reaction conditions cannot be quantitatively interpreted by the currently available ML-XANES methods.

In this article, we report on the new method of analysis of bimetallic clusters during the in situ experiment in which mixed species that comprise as few as 4–5 metal atoms coexist in time-dependent compositions: Cu\textsubscript{x}Pd and Cu\textsubscript{y}Pd along with their monatomic counterparts, Cu\textsubscript{z} and Pd\textsubscript{w}. We demonstrate the utility of this approach for linking the composition of the clusters to their activity for propane oxidation reaction. Scheme 1 shows the procedure of resolving the structure information from the operando Cu K-edge GIXANES data. Because of the coexistence of mixed states of Cu that correspond to the coexistence of several types of clusters during the reaction, multivariate curve resolution—alternating least square (MCR-ALS) analysis was utilized as the initial step of the analysis for speciation of different types of unique metal species and to separate their spectra from the mixed signal. By performing speciation of the evolving phases using the MCR-ALS, we are able to extract the spectra about the pure phases from the mixtures during the in situ experiment. At the next step, an artificial neural network was trained, validated, tested, and finally, applied to the pure spectra of unique metal species extracted at the previous step to obtain the structure information. Finally, the information about the speciation of different states of the catalyst and their unique compositions and structures were correlated with the catalytic activity in the propane oxidation reaction.

2. EXPERIMENTAL DETAILS

2.1. Synthesis of Cu–Pd Clusters. The catalysts are prepared by soft landing of Cu\textsubscript{a}, Cu\textsubscript{b}Pd\textsubscript{c}, Cu\textsubscript{d}Pd\textsubscript{e}, or Pd\textsubscript{f} clusters, which are produced in a molecular beam within a high vacuum chamber, on an atomic layer-deposited alumina film of three monolayer thickness (~0.7 nm) on the top of a SiO\textsubscript{2}/n-type (P-doped) Si wafer (see Figure S1, which shows a typical mass spectrum of mono- and bimetallic clusters produced in the cluster apparatus from which a cluster of a single desired size is selected for deposition using a mass filter. On the 20 × 22 mm2 size supports, two spots of 8 mm diameter were coated with clusters at a coverage corresponding to 10% of atomic monolayer equivalent, monitored online during deposition. Thus, all samples contained the same number of metal atoms, with a deviation smaller than 5%. The clusters are landed so that the impact energy is less than 1 eV per atom, ensuring that they stay intact and do not undergo fragmentation upon landing on the substrate. More details on the cluster synthesis are given elsewhere. To probe the changes in the oxidation state of copper in the cluster under reaction conditions, we collected X-ray absorption near-edge spectra at a grazing incidence angle (GIXANES). To maximize the sensitivity of the experiment to the clusters lying on the surface of the support, we scattered the X-ray beam off the sample surface close to the angle of total reflection, i.e., the critical grazing incident angle of 0.3°. An additional advantage of the low angle is that a long stripe of the sample surface is illuminated, which significantly increases measured signal levels in the case of samples with very low metal coverage. GIXANES data were collected at the Cu K edge (8.9 keV) on a four-element fluorescence detector (Vortex) mounted parallel to the sample surface in order to minimize background from elastic scattering.

A complementary small-angle X-ray scattering measurement was performed at grazing incidence (GISAXS) to monitor possible agglomeration of clusters during the reaction. The X-ray beam of 9.1 keV energy was scattered off the sample at the angle of incidence, 0.15° (chosen near the critical angle of 0.18° of the silicon substrate), and the two-dimensional GISAXS images were collected.
3. MACHINE LEARNING METHOD

MCR-ALS and neural network approaches were combined in this work to provide quantitative analysis of the experimental XANES spectra. Each of the spectral components were separated from the total spectrum by the MCR-ALS and a unique Cu,−Pd,−O ensemble corresponding to each spectrum was tentatively proposed, as guided by the comparison with bulk standards. Finally, the neural network approach was utilized to provide quantitative structural information for each ensemble.

3.1. MCR-ALS. Because of the possible presence of mixed states of Cu electronic structure in the experimental XANES at all stages of the reaction, as evident from our previous work on CO$_2$ methanation using CuO$_2$ clusters, the task of XANES data analysis is 2-fold: (1) speciation and (2) structural analysis of each species. Linear combination fit (LCF) and MCR-ALS are the most commonly used techniques for studying the composition of mixtures. LCF requires the use of known standards for the fitting, which is a limitation for nanomaterial studies because their XANES spectra change significantly between the bulk and nanomaterial for which there are often no standard spectra available. MCR-ALS is on the other hand, can isolate the species and obtain their concentrations in the mixture automatically and without prior knowledge of standards. To determine the number of independent components in the MCR-ALS method, we applied principal component analysis (PCA) to the data set as the initial step. Then, an iterative procedure is performed (we used the MCR-ALS toolbox52,58) to separate the pure species from the series of mixed spectra.

A brief overview of the iterative procedure used by MCR-ALS, we begin with defining the input data set as the two-dimensional matrix D containing experimental XANES spectra. Then, we follow the equation $D = CS^T + E$, where C is the concentration profile, S^T is the transposed matrix containing resolved pure spectra and E is the matrix containing residuals, to express the input data set in terms of C and S^T, i.e., obtain the pure spectra and their contributions to the total spectrum at each reaction step. Two constraints are included in the fitting: (1) the non-negative values are imposed on both C and S^T, and (2) the sum of weighting factors of all pure spectra at each reaction step equals 1. At the start, the initial estimation of C and S^T are prepared by the purest variable detection method. The fitting process is then repeated iteratively to minimize the norm $\|D - S^T\|$. More details of MCR-ALS used in this work can be found in SI Section S2).

3.2. Artificial Neural Network. Following the separation of the Cu K-edge XANES into pure components via MCR-ALS, a neural network approach could then be used to extract the structural information from the pure species. The neural network is prepared according to our previous work, in which we described how the correlation between the XANES spectrum and the structural descriptors is built. The first nearest neighbor metal pairs of two types: Cu−Cu, Cu−Pd coordination numbers (CNs) are chosen as the structural descriptors. To train the neural network, a large training data set (containing tens to hundreds of thousands of spectra with known labels) is needed. Collecting such a data set is unrealistic from experimental perspective, and hence we used the previously developed approach by which we train the neural network with synthetic data based on theoretical XANES calculated by FEFF code. To accomplish this, we first performed a theoretical benchmark by simulating the Cu K-edge XANES of standard Cu$_2$O and CuO. These simulations are reported in Figure S3. The optimized simulation parameters capture the major qualitative trends, and thus FEFF can be used for our purposes as opposed to other more detailed theoretical codes. Next, we used the Cu oxide cluster models, constructed for our previous work, as the starting structures for the simulation. Pd is added to the models with ratios of Cu:Pd varied between 4:1 and 1:3, which covers the experimental clusters’ composition. To incorporate the change in distances associated with Cu and Pd mixing, we approximated each particle as quasi-spherical with an average lattice constant determined by Vegard’s law:

$$a_{eff} = x_{Cu}a_{Cu} + (1 - x_{Cu})a_{Pd}$$

where a_{eff} is the effective lattice constant, x_{Cu} is the ratio of Cu, a_{Cu} is the Cu$_2$O or CuO lattice constant, and a_{Pd} is the Pd$_2$O or PdO lattice constant, all of which are described in Table S1. The effective lattice constants were obtained to range from 2.965 to 3.052 Å for Cu$_2$Pd$_{1-x}$O and from 4.339 to 4.479 Å for Cu$_x$Pd$_{1-x}$O, using eq 1. A set of theoretical site-specific XANES spectra at Cu K edge was calculated by FEFF using the optimal parameters as described in SI Section S3. To generate the site-specific training data, a set of atomistic models of Cu$_{Pd_{1-x}}$O (1375 sites) and Cu$_x$Pd$_{1-x}$O (1287 sites) was created. The number of metal atoms are in the range of 4–83 atoms for Cu$_2$Pd$_{1-x}$O and 4 to 65 atoms for Cu$_x$Pd$_{1-x}$O. All structural models are shown in Figure S4. To maximize the variability (CNs, interatomic distance, size and composition) and increase the size of our training data, a combinatorial approach was applied to the site-specific XANES. This approach has been utilized in our previous works. Then, an iterative procedure is performed (we used the MCR-ALS toolbox) to separate the pure species from the series of mixed spectra.

Using this approach, we enlarged our XANES-CN data set by randomly selecting three XANES-CNs pairs from our original site-specific data set, which is sufficiently large for training of our neural network models. To compensate for the X-ray energy shift (ΔE) between the theory and experiment, we shifted all the theoretical XANES spectra by the amount based on the difference between the experimental standards of the XANES-CN.
bulk and the corresponding theoretical XANES. Besides, all spectra were interpolated to the same energy scale from \(E_{\text{min}} = 8979.97 \text{ eV} \) to \(E_{\text{max}} = 9060.21 \text{ eV} \). For the validation data set, we used the particle-average XANES by calculating the average XANES spectra of all the sites for each model.

Neural network training and optimization was initialized with a one-dimensional convolutional input layer based on the successful application of such a method to bimetallic nanoparticles.\(^{42}\) During training, the training loss (MSE between the input and output site-specific XANES) and validation loss (MSE between the input and output particle-average XANES) are minimized. The final optimized architecture is shown in Table S2. To estimate the error in the trained neural network predictions, we followed the methodology established in ref \(^{61}\). Three neural networks were trained independently to show the stability of our neural network model, and thus we report the mean prediction and error bar. More details of our theoretical simulation and neural network training are given in SI Section S3. In addition, to estimate the systematic error for the prediction on the experimental data set by the neural network, we introduced the max error to the experimental prediction process, as described in SI Section S4.

4. RESULTS AND DISCUSSION

4.1. XANES Analysis. To qualitatively interpret the evolution of the state of Cu and the structural change in the Cu\(_x\)Pd\(_y\) clusters from their experimental XANES spectra, we compared their raw data with experimental data of Cu foil, the bulk of Cu\(_2\)O, CuO, and Cu(OH)\(_2\). The experimental XANES spectra of Cu\(_x\)Pd, Cu\(_x\)Pd, and Cu\(_x\) are summarized in Figures 1 and 2 and Figure S5a, respectively. The data are shown for the heating cycle (25 to 550 °C) and cooling cycle (550 to 25 °C). Starting from the Cu\(_x\)Pd in Figure 1a, b, the clear change in peak intensity of the pre-edge (region A) and the shape change of main XANES part (region B and C) at different temperatures can be correlated with the changes between the references shown in Figure 1b. Specifically, at room temperature of the heating cycle, there is no visible pre-edge peak at region A but a relatively high peak intensity (>1.4) at \(\sim 8995 \text{ eV} \) of region B, which corresponds to the features of the bulk Cu(OH)\(_2\). With the temperature increase to 400 °C, the intensity of pre-edge peak at region A gradually increases and the major peak near the edge at region B decreases, which suggests that a different structure is formed. Considering the references of Cu foil, Cu\(_2\)O, CuO and Cu(OH)\(_2\) in Figure 1b, in which only Cu foil and Cu\(_2\)O have the sharp pre-edge peak at region D, we exclude the possibility of CuO and Cu(OH)\(_2\). In addition, the XANES features of Cu\(_x\)Pd at around 9020 eV (region C of Figure 1b) of the heating stage (400 to 550 °C) follows the feature of the bulk Cu\(_2\)O but not Cu foil at region F of Figure 1b, in which the Cu foil has the opposite sign of the oscillation at \(\sim 9020 \text{ eV} \) (region F of Figure 1b). During the cooling cycle, the pre-edge feature still exists with lower peak (region A) but new feature (B) appears at \(\sim 9014 \text{ eV} \) in Figure 1a, as indicated by an arrow. To clarify the phase evolution, we applied PCA analysis to the Cu\(_x\)Pd. PCA reduces the dimensionality of the
possible unique spectra and describes the variation caused by the original characteristics (different phases at different temperature). Here, two-dimension representation of PCA results is displayed in Figure 1c, showing the clustering and transition in both the heating and cooling process.

Similar trends as those seen for Cu3Pd are also observed in Cu4Pd and Cu4 in Figure 2 and Figure S5, where both Cu3Pd and Cu4 show a clear pre-edge peak (region A) at from 400 to 550 °C during the heating cycle. During the cooling cycle, the pre-edge feature exists with lower peak (region A) and new feature (B) appears at ∼9014 eV in Figure 1a, as indicated by an arrow. However, there are some differences in the cooling process, where Cu3Pd still has a clear pre-edge peak (region A) from 500 to 400 °C but Cu4Pd and Cu4 exhibit a lower pre-edge feature (region A) during the cooling cycle. In summary, Cu3Pd, Cu4Pd, and Cu4 show clear phase transitions during the heating and cooling cycle.

4.2. MCR-ALS Results. To identify the different phases and obtain their ratios in operando conditions at different temperatures, we carried out the MCR-ALS analysis of Cu XANES data. To obtain the number of unique spectra corresponding to the pure species present in the operando
PCA was applied to each data set and the explained variance (eigenvalues in PCA) is shown in Figure 3. The crossover between the initial variances, up to the third component (indicated by red dots in Figure 3), and the rest of the values, indicates that three components are sufficient to describe the entire data set for each of the three catalysts.

The MCR-ALS analysis resulted in the isolation of the spectra for each species, including their concentration profiles, for each of the catalyst. In Figure 4a–c, three separated spectra S1–S3 displayed unique pre-edge at region A and main XANES features at region B. In summary, S1 has a higher peak intensity near the edge (region B) and no clear pre-edge peak (region A). S2 has the sharp pre-edge peak at region A and a relatively lower peak at region B. For S3 species, they have the lowest pre-edge peak (region A) and different XANES features (region B) compared to the other two phases. In Figure 4d–f, the fractions of each species at different temperatures are shown. At the start of heating cycle, the clusters show a nearly pure phase of S1. With the temperature increase, the concentration of S1 decreases and the ratio of the S2 species starts to increase. At 500 °C in the heating part, the S2 species reaches the highest ratio. Then, the fraction of S3 species starts to increase.

Figure 5. Comparison of MCR results with the experimental XANES which has the largest fraction of pure species from the MCR analysis. (a–c) Experimental XANES, which has the largest fraction of pure species from the MCR analysis. (d–f) Pure species from the MCR-ALS results.
to increase and those of the other two species (S1, S2) decrease. The concentration profile is correlated with our previous observation of the experimental data in Figures 1 and 2a and Figure S3a, where the unique features (at region A and B) are observed, respectively, at the beginning of heating, the higher temperatures (400 to 500 °C) of the heating cycle, and the lower temperatures (400 to 25 °C) of the cooling cycle.

In addition, from the concentration profile shown in Figure 4d–f, nearly pure phases are found at 25 and 500 °C of the heating cycle and 400 °C in the cooling cycle. To examine the capability of the MCR-ALS to separate the independent spectra, we compared the S1, S2, and S3 of Cu3Pd, Cu4Pd, and Cu4 with the experimental data at those temperatures with the highest fraction of pure species shown in Figure 5a–c. The results show that three pure phases separated from MCR-ALS in Figure 5d–f exhibit similar features (in region B) compared to the raw data in Figure 5a–c. In addition, for each species, there is also a trend in region B correlated with different clusters (CuPd, CuO, and CuPd). For example, the CuPd have the highest peak intensity compared to CuPd in Figure 5a, b. However, the trend is reversed in Figure 5c. In summary, following the high temperature, the formation of different phases from our MCR-ALS analysis cause the change in average structure.

To analyze each species corresponding to S1, S2 and S3, the Cu foil, the bulk of Cu(OH)2, CuO and CuO are utilized as guidance for comparing with the spectra denoted as S1–S3 for each of the samples: Cu3Pd, Cu4 and Cu4Pd, shown in Figure 6. For S1 species in Figure 6a, there is no pre-edge feature at region A but high peak near the edge position at region B, which matches the feature of Cu(OH)2 from Figure 6a. For S2 species in Figure 6b, the feature of the sharp pre-edge peak at region A is associated with the standard of CuO and Cu foil in Figure 1b region D. In addition, S2 species follows the features of Cu2O at region B of Figure 6b but not the Cu foil because Cu foil has the opposite oscillation (region F in Figure 1b) at around 9020 eV and relatively lower peak intensity in the main XANES region (region E in Figure 1b). For S3 phase in Figure 6c, the features at pre-edge (region A) and main XANES region (region B) match the standard of CuO, hence they are assigned to CuO phase. Because of the nanoscale effect and the alloyed Pd with Cu, the peak shape in the main XANES region is expectedly different from the bulk Cu reference spectra. However, the trend of the XANES in the A, B regions (Figure 6) can be qualitatively compared with the corresponding trends in the reference Cu spectra. Besides, pre-edge features are unique and are often qualitatively similar for the bulk and the nanoparticles. Hence, we assigned our MCR-ALS results to each type of species with the closest match of their respective features.

4.3. Neural Network Results

To extract the structural information from those pure species separated by MCR-ALS, we performed neural network-XANES analysis. The training data were constructed by the FEFF simulation described in SI Section S3. Because of the complexity of the Cu(OH)2 models, only S2 and S3 species were studied; they also have more influence on the catalytic activity. To show the effect of Pd in the XANES simulation, we used different ratios of Cu:Pd from 1:3, 1:1 to 3:3 in Figure 7. The results demonstrate that XANES shifts to the lower energies with the increase in the Pd:Cu ratio and the peak intensity near the edge position exhibits the systematic trend for the selected particles, where the peak intensity near the edge position increases with the increase in the Cu ratio. The trend is also comparable with the MCR-ALS results in Figure 5. To validate our trained neural network, we fed particle-averaged XANES of Cu3Pd, Cu4Pd, and Cu4Pd into our trained neural network. The theoretical models for our validation are listed in the Figure S4. The results are shown in Figure 8, for both Cu3Pd, Cu4Pd, and Cu4Pd specific neural networks, where the median absolute deviation in CN prediction is very low and suggests the prediction of the median CNs is very stable. The standard deviation from the ensemble of three neural network models provided the estimation of the error as shown in Figure 8. Then, we applied our trained neural network to evaluate the CuPd, CuPd from MCR-ALS analysis and summarized the results in Table 1. For the analysis of Cu clusters, we relied on
Figure 8. True values of CN(Cu–Cu), CN(Cu–Pd) vs predicted values of CN(Cu–Cu), CN(Cu–Pd) for the first shell: (a) CN(Cu–Cu), (b) CN(Cu–Pd) obtained using the Cu₃Pdₓ₋₁O neural network model, (c) CN(Cu–Cu), (d) CN(Cu–Pd) obtained using the Cu₄Pdₓ₋₁O neural network model.

Table 1. Prediction of Species S2 and S3 from MCR-ALS Results by the Cu₃Pdₓ₋₁O (Cu₂O) and Cu₄Pdₓ₋₁O (CuO) Neural Network Models

<table>
<thead>
<tr>
<th></th>
<th>MCR-ALS</th>
<th>S2–Cu₃Pd</th>
<th>S2–Cu₄Pd</th>
<th>S2–Cu₂</th>
<th>S3–Cu₃Pd</th>
<th>S3–Cu₄Pd</th>
<th>S3–Cu₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicted</td>
<td>CN(Cu–Cu)</td>
<td>2.3 ± 0.4</td>
<td>2.6 ± 0.4</td>
<td>3.3 ± 0.5</td>
<td>2.2 ± 0.3</td>
<td>2.4 ± 0.1</td>
<td>3.5 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>CN(Cu–Pd)</td>
<td>1.0 ± 0.3</td>
<td>0.7 ± 0.2</td>
<td>3.3 ± 0.5</td>
<td>3.6 ± 0.4</td>
<td>3.7 ± 0.2</td>
<td>3.5 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>CN(Cu–M)</td>
<td>3.3 ± 0.5</td>
<td>3.3 ± 0.4</td>
<td>3.3 ± 0.5</td>
<td>3.6 ± 0.4</td>
<td>3.7 ± 0.2</td>
<td>3.5 ± 0.1</td>
</tr>
</tbody>
</table>

ACS Applied Materials & Interfaces
www.acsami.org

CONCLUSIONS

The structure–activity relationship was investigated for propane oxidation reactions using size-selected Cu₃Pd₀ clusters and studied by synchrotron-based XANES combined with the simultaneous monitoring of catalytic performance. Using a combination of MCR-ALS and neural network-based machine learning methods, we found that the high catalytic activity of the Cu-containing species is linked to the unique selectivity of oxidized Cu during the oxidation reaction. However, on basis of the available data, it is not possible to unambiguously determine whether it is the oxidation state or the structure from refs 33 and 69 alone, that has the exclusive or dominant effect on the performance, or the combination of these two phenomena. The benefits of Cu in the studied catalysts are 2-fold: dramatically improved performance in the reaction and significant economic impact on the catalyst price due to the reduced or eliminated use of Pd in the studied and potentially other oxidative processes as well.

To incorporate the systematic error from our neural network based on the validation results, we calculated the max error and added to our experimental evaluation. The detailed description of the max error is given in SI Section 4. From the results in Table 1, it is evident the CN(Cu–Cu) increases, and CN(Cu–Pd) decreases, with the increase in Cu ratio. Besides, the prediction from neural network is not consistent with forming large aggregates because the low coordination numbers of Cu–Cu and Cu–Pd correspond to cluster sizes that are consistent with our GISAXS results shown in Figure S2.

4.4. Catalytic Activity and Its Correlation with the Structure. The reactivity of clusters is investigated with a reactant gas consisting of a mixture of 3% propane and 3% of oxygen seeded in helium, fed into the reactor at a flow rate of 18 sccm and a cell pressure of 1.1 atm. The temperatures applied are 25, 50, 150, 300, 450, and 550 °C, with a slow heating between the individual temperature steps to ensure thermal stabilization. The reaction products are identified and their evolution with temperature followed using mass spectrometry. The reaction rates (r) obtained from mass spectra data collected during the heating phase ramp for the clusters that underwent detailed interrogations for the evolution of their structure and oxidation state above are shown in Figure 9 reaching up to about 1.2 molecules/second/metal atom for propylene oxide, which is significantly higher than the rates obtained by currently used techniques where propylene or a mixture of propane and propylene are used as the starting gases. Pd₄ with a high level of combustion to CO₂ turns out to have the lowest activity as well as the lowest selectivity toward C3 products. In contrary, for the Cu₄Pd clusters with prevailing Cu content, both the reaction rate and the selectivity toward C3 products dramatically increases. The rates obtained for the studied clusters go by the following order. Propylene oxide formation: Pd₄ ≪ Cu₃Pd = Cu₄Pd. Propylene production: Pd₄ ≪ Cu₃Pd < Cu₄Pd. Such order can be correlated with our structural analysis by neural network-XANES analysis in Table 1 where Cu₄Pd shows a larger Cu–Cu coordination number and lower Cu–Pd coordination number. Selectivity for both propylene oxide and propylene formation are overall high and very similar for the mixed CuPd clusters in the 150–300 °C range and at higher temperatures, respectively. The performance of Cu₄ clusters (shown in ref 40) was comparable to that of Cu₄Pd.

In our studies, at elevated temperatures, both Cu₃Pd and Cu₄Pd exhibit high catalytic activity, with unique selectivity toward propylene oxide or propylene between 150 and 300 °C and 450–550 °C, respectively, which can be also explained by the onset of phase transition between 150–300 °C range by our MCR-ALS analysis (Figure 4). Combining the MCR-ALS results with the reactivity study, we conclude that it is the Cu(+) phase, which at elevated temperatures is correlated with the high catalytic activity of the Cu-containing species. The temperature mainly affects the Cu oxidation state. The theoretical study from the ref 33 provides the explanation of the unique activity of oxidized Cu during the oxidation reaction. However, on basis of the available data, it is not possible to unambiguously determine whether it is the oxidation state or the structure from refs 33 and 69 alone, that has the exclusive or dominant effect on the performance, or the combination of these two phenomena. The benefits of Cu in the studied catalysts are 2-fold: dramatically improved performance in the reaction and significant economic impact on the catalyst price due to the reduced or eliminated use of Pd in the studied and potentially other oxidative processes as well.
learning methods for XANES data analysis, we obtained speciation of chemical states and compositions of Cu species in Cu and CuPd clusters, along with information about their structure, and correlated these results with catalyst activity and selectivity. Cu was found to be the source of the enhancement of catalytic activity and selectivity toward C3 products. The MCR-ALS analysis also provided an explanation for the change in activity and selectivity with temperature, identifying Cu$^+$ species and structures with high Cu–Cu and low Cu–Pd coordination numbers as the roots of the improved catalytic performance. This case study demonstrates the potential of the applicability of MCR-ALS and machine learning-assisted analysis of operando XANES spectra to the mechanistic understanding a broad class of ultrasmall bimetallic cluster-based catalysts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.1c06714.

Figure 9. Rate of formation and carbon-based selectivity for reaction products during oxidative dehydrogenation of propane over alumina-supported Cu and Cu$_x$Pd$_y$ clusters. Rates for the major products propylene, propylene oxide, and the byproducts CO, and CO$_2$ are plotted for (a) Pd4, (b) Cu$_3$Pd, and (c) Cu$_4$Pd cluster catalysts. Carbon-based selectivity for the reaction products are plotted for (d) Pd4, (e) Cu$_3$Pd, and (f) Cu$_4$Pd cluster catalysts.
Mass spectrum of clusters; details of XANES simulation by FEFF9 for Cu-Pd atomic clusters and nanoparticles; MCR-ALS analysis used for the experimental XANES analysis; neural network analysis for the evaluation of the theoretical and experimental XANES (PDF)

AUTHOR INFORMATION

Corresponding Authors

Anatoly I. Frenkel — Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States; Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States; Email: anatoly.frenkel@stonybrook.edu

Stefan Vajda — Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States; Department of Nanocatalysis, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague 8 18223, Czech Republic; Email: stefan.vajda@jh-inst.cas.cz

Authors

Yang Liu — Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States

Avik Halder — Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

Soenke Seifert — X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

Nicholas Marcella — Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States; Email: orcid.org/0000-0002-2224-532X

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.1c06714

Author Contributions

Y.L., A.H., and S.S. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The application of machine learning approaches to solving the structure and composition of bimetallic clusters based on their XANES data was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0012573. The theoretical simulation used resources of the Advanced Photon Source (beamline 12-ID-C, S.S.) supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. S.V. also acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement 810310, which corresponds to the J. Heyrovský Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR — The institutional approach towards ERA”) during the finalization of the paper. The funders had no role in the preparation of the article. The authors thank Dr. Michael Pellin for performing the ALD alumina coating of the Si substrates.

REFERENCES

