Effects of Molecular and Electronic Structures in CoO\textsubscript{x}/CeO\textsubscript{2} Catalysts on NO Reduction by CO

Shuhao Zhang,‡ Yuanyuan Li,† Jiahao Huang,† Jaeha Lee,‡ Do Heui Kim,‡ Anatoly I. Frenkel,§,† and Taejin Kim*‡

‡Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
§School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea

ABSTRACT: Ceria-supported transition metal oxide (such as CoO\textsubscript{x}) catalysts are promising, more cost-effective candidates to replace platinum group metal catalysts in the NO reduction process. A series of CoO\textsubscript{x} (0.2–3.13 Co/nm2) catalysts supported on CeO\textsubscript{2} were prepared by the incipient wetness impregnation method and were tested for NO reduction by CO reaction in this work. Various characterization techniques, including Brunauer–Emmett–Teller, Raman spectroscopy, powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were used to investigate the molecular and electronic structures of CoO\textsubscript{x}/CeO\textsubscript{2} catalysts. It was observed that there are structural changes with varied Co loadings, such as (1) sub-monolayer: <2.3 Co/nm2, (2) monolayer: 2.3–2.7 Co/nm2, and (3) over-monolayer: >2.7 Co/nm2. The highest molar rate was observed at the 2.7 Co/nm2 sample. In the case of over-monolayer samples, such as 7.1 Co/nm2, the oxidation state of Co affected the catalytic activity. Using in situ XAS, an oxidation state change from Co3+ to Co2+ between 200 and 300 °C was identified. Catalyst deactivation was also affected by the change of Co oxidation states from the fresh sample (Co3+) to the used sample (Co3+/Co2+). N\textsubscript{2}O formation and decomposition were affected by the reaction temperature in a two-step procedure, where NO converts into N\textsubscript{2}: (1) NO → N\textsubscript{2}O and (2) N\textsubscript{2}O → N\textsubscript{2}. N\textsubscript{2} selectivity monotonically increased with an increasing reaction temperature between 200 and 400 °C. The results provided several structure–property relationships and a possible reaction mechanism for NO reduction by CO reaction over CoO\textsubscript{x}/CeO\textsubscript{2} catalysts.

1. INTRODUCTION

Anthropogenic greenhouse gas emissions and pollutants in the atmosphere are causing growing global warming concerns.1 Nitrogen oxides (NO\textsubscript{x}) are some of the main contributors—in addition to hydrocarbons (HCs), carbon monoxide (CO), sulfur oxides (SO\textsubscript{x}), and particulate matters—to air pollution.2–6 Many investigations have been performed for catalytic NO\textsubscript{x} (mainly NO) reduction, resulting in the development of techniques, such as NO reduction by hydrocarbon or CO and NH\textsubscript{3}-selective catalytic reduction.7–15 Among the discovered methods, NO reduction by CO (2NO + 2CO → N\textsubscript{2} + CO\textsubscript{2}) has received much attention because a large amount of carbon monoxide (CO) also exists in automobile exhausts. Because CO is also one of the notorious pollutants, the reduction of NO by CO is an important approach that can reduce two pollutants (NO and CO) simultaneously. Moreover, this is a major catalytic reaction in three-way catalytic converters (TWCS). For the past few decades, supported platinum group metals (PGMs), such as Pt, Rh, Ru, and Pd, have been used in the NO reduction by CO reaction due to their high activity and high resistance to catalyst deactivation.13–17 It has been suggested that the NO reduction by CO reaction is a two-step reaction: CO + 2NO → N\textsubscript{2}O + CO\textsubscript{2} (nitrous formation) and CO + N\textsubscript{2}O → N\textsubscript{2} + CO\textsubscript{2} (nitrous reduction).18 The NO reduction by CO is also believed to be a site-specific reaction, including CO adsorption and NO dissociation.19 N\textsubscript{2}O is a product from incomplete NO reduction, especially during the cold start period of vehicles. Due to the fact that N\textsubscript{2}O is very difficult to remove, the N\textsubscript{2}O dissociation rate and N\textsubscript{2} selectivity should be improved to satisfy the NO\textsubscript{x} regulation. The important roles of metal–support and metal–oxygen-support interactions have also been emphasized in the literature.20–22 Granger et al. reported that different supports could control the rate constant of two
competitive steps, such as \(2N^* \rightarrow N_2 + 2^* \) and \(N_2^* + NO^* \rightarrow N_2O + 2^* \), where \(* \) is a vacant adsorption site.\(^\text{22}\) Pt (or Pd)/CeO\(_2\) showed higher NO reduction compared to Al\(_2\)O\(_3\) supported catalysts because of their strong metal–cera interaction and the formation of solid solution, Ce\(_{1-x}\)M\(_{x}\)O\(_2\).\(^\text{24}\) Mono- and bimetallic supported catalysts have also been investigated to improve the catalytic activity and N\(_2\) selectivity. For example, Schmal et al. reported that Pd–Mo/Al\(_2\)O\(_3\) catalysts showed higher N\(_2\) formation than that of the Pd/Al\(_2\)O\(_3\) catalysts.\(^\text{25}\) The authors also observed the change of oxidation states of Pd and Mo (e.g., Pd\(^{2+}\), Pd\(^{0}\), Mo\(^{6+}\), and Mo\(^{5+}\)) during the NO reduction by CO reaction and concluded that Mo\(^{6+}\) promotes catalytic activity and N\(_2\) selectivity.

From an economic point of view, the use of PGMs should be reduced due to their high cost and scarcity.\(^\text{26}\) Therefore, much attention has been paid to explore the supported transition metal oxide catalysts, which have shown promising results for N\(_2\)O decomposition and CO oxidation.\(^\text{27−29}\) Among transition metals, cobalt is a great candidate as a replacement for noble metals because of its abundance, low cost, and high stability under harsh reaction conditions.\(^\text{30,31}\) Considering these factors, cobalt oxide (CoO\(_x\)) has been studied and used as a heterogeneous catalyst in several chemical reactions like CO oxidation, water–gas shift, dry reforming, ethanol steam reforming, and soot combustion.\(^\text{32−35}\) Recently, An et al. reported that Co\(_3\)O\(_4\) loaded with Pt nanoparticles showed higher CO oxidation activity under reducing conditions than other mesoporous oxides, such as NiO, MnO\(_2\), and FeO\(_2\).\(^\text{40}\) The authors also found that the Co\(^{2+}\) site is the active site in the Pt/Co\(_3\)O\(_4\) catalyst, whereas octahedrally coordinated surface Co\(^{3+}\) is the active site in bulk Co\(_3\)O\(_4\). In addition, the oxidation state of CoO\(_x\) during the CO oxidation reaction has been investigated by in situ spectroscopic techniques, such as the X-ray absorption near edge structure (XANES) and ambient-potential X-ray photoelectron spectroscopy (XPS) by Jansson et al.\(^\text{41}\) They found that the catalyst deactivated as surface cobalt oxide reconstruction occurred. Also, the deactivated catalyst could be reactivated by oxidizing procedures. These results imply that the oxidation state of CoO\(_x\) plays a key role in controlling the catalytic activity in NO reduction by CO reaction.

Ceria is widely used as an oxide support in the TWCs because it has shown outstanding redox ability (Ce\(^{4+}/Ce^{3+}\)), high oxygen storage capacity, high dispersion of noble metals, and the ability to improve the thermal stability when combined with other metal oxides.\(^\text{42−46}\) It has been reported that the combination of ceria with transition metal oxide (or metal) improved redox properties and surface oxygen mobility, which resulted in higher catalytic activity during the NO reduction by CO reaction.\(^\text{47}\) Deng et al. reported that pure CeO\(_2\) showed no activity for the CO oxidation and very low activity for the NO reduction by CO reaction up to 300 °C.\(^\text{50}\) However, Mn-doped CeO\(_2\) and Cu/CoO\(_2\) catalysts showed improved catalytic activities for both CO oxidation and NO reduction by CO reaction, although CO conversion was still low (~50%). Using ex situ XPS and in situ DRIFT results, the authors claimed that the catalytic activity is directly related to Ce\(^{3+}\), oxygen vacancies, and ceria cell lattice expansion. Liu et al. also observed higher photocatalytic NO reduction by CO reaction activity over the CuCeTi catalyst compared to the CuTi catalyst using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).\(^\text{51}\) The authors hypothesized that the transferred oxygen from ceria to copper increased oxygen vacancies and oxygen concentrations in ceria and copper, respectively. This transition of oxygen resulted in higher catalytic activity during the NO reduction by CO reaction. It is well documented that the loading of surface species (e.g., metal oxide) can affect the catalytic activity and molecular structure, so the determination of monolayer coverage is very important because the monolayer sample should contain the highest dispersion of surface species on the support without forming a crystalline structure.\(^\text{10,51−53}\) Recently, Savereide et al.\(^\text{52}\) also studied the effect of CeO\(_2\) morphology in CoO\(_x\)/CeO\(_2\) catalysts for the NO + CO reaction and noticed that, compared to nanoparticles and nanocubes, the CeO\(_2\) nanorod has a rougher surface and more oxygen vacancy defects. These features help charge transfer on the metal–support interface as well as keep Co oxidation states stable during reaction conditions. As a result, the authors found that cobalt oxide catalysts with CeO\(_2\) nanorods as the supporting material performed better in the NO + CO reaction than the ones with CeO\(_2\) nanoparticles or nanocubes as supports.

For the reasons briefly summarized above, the CoO\(_x)/CeO\(_2\) catalyst has been used in several reactions and processes like steam reforming,\(^\text{54,55}\) and N\(_2\)O decomposition.\(^\text{55}\) It has been proven in these studies that the CoO\(_x)/CeO\(_2\) catalyst is a very promising catalyst to replace PGMs due to its high activity and good stability. However, a systematic understanding of the fundamental molecular structure of the catalyst and the structure–activity relationship for the NO reduction by CO reaction is lacking. For instance, the changes in molecular structures with different Co loadings, as well as the changes of the oxidation state of Co in CoO\(_x\) during the NO reduction by CO reaction. The important factor, as hypothesized above, a possible correlation with its catalytic activity, is not yet fully understood. The main reason is the challenge of carrying out such investigation in realistic working conditions and the difficulty in correlating the changes that occur in this multicomponent system (catalyst, support, reactants, intermediates, and products) to identify the active species in the catalytic process.

Herein, we report a systematic study of a series of CeO\(_2\)-supported CoO\(_x\) catalysts by a multimodal approach, involving in situ synchrotron X-ray absorption spectroscopy (XAS), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and other complementary techniques (e.g., Raman spectroscopy, X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) surface area analysis in addition to catalytic activity and product selectivity measurement). In this work, by comparing the results of different techniques, the following fundamental questions were addressed to understand the NO reduction by CO over CeO\(_2\)-supported CoO\(_x\) catalysts.

- What is the monolayer coverage of CoO\(_x)/CeO\(_2\) catalysts?
- How are the molecular and electronic structures of samples affected by Co surface density?
- How are the molar reaction rates affected by Co loadings?
- What are the key parameters to control the NO reduction by CO reaction?
- What are the intermediate species and possible reaction mechanisms of NO reduction by CO reaction with CoO\(_x)/CeO\(_2\) catalysts?
2. EXPERIMENTAL SECTION

2.1. Catalyst Synthesis. The supported cobalt oxide (CoOx) was prepared by the incipient wetness impregnation of an aqueous solution with varying concentrations of cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O, ACS grade, 98.0–102.0%, crystalline, Alfa Aesar) onto CeO2 (Rhodia, HSA 5). After impregnation, the samples were dried at room temperature (RT) for 12 h. The initially dried samples were transferred to a tube furnace (Lindberg/Blue Mini-Mite Tube Furnace, model TF55030A-1) and further dried in air (dry grade, from Airgas) at 120 °C (2 °C/min ramping rate) for 12 h and subsequently calcined at 400 °C (5 °C/min ramping rate) for 6 h. After the calcination process, the samples were sieved through a 40-mesh sieve (Fisherbrand).

2.2. Specific Surface Area and Pore Volume Measurement. The specific surface area and pore volume of the series of CoOx/CeO2 catalysts were calculated from N2 adsorption/desorption isotherms using the Brunauer–Emmett–Teller (BET) theory and the Barrett–Joyner–Halenda methods, respectively. The Micromeritics ASAP 2010 device was used at the liquid N2 temperature of −196 °C for analysis. Before the analysis, 0.1 g of catalyst was pretreated in a vacuum at 300 °C for 4 h to remove impurities.

2.3. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The Co element content in the liquid N2 temperature of −196 °C was determined by the ICP-AES test and the results are included in Table 1 as well. It was observed that the specific surface area and pore volume of the samples decrease with increasing Co loading. For instance, the as-received supporting material CeO2 had the highest surface area of 235 m²/g, whereas the 30...
wt % sample (98 m²/g) showed the lowest surface area of all of the prepared CoOₓ/CeO₂ samples. Compared to the as-received CeO₂, the specific surface area of the 30 wt % CoOₓ/CeO₂ sample was decreased by 58%. The cobalt oxide surface density (Co/nm²) of the CoOₓ/CeO₂ catalyst samples was calculated using the sample surface area

$$\text{surface density of Co} = \frac{W_{\text{Co}} \times 100}{M_{\text{Co}}} \times N_A$$

where W_{Co} is the weight percentage of Co, M_{Co} is the atomic weight of Co, N_A is the Avogadro number, and S is the sample surface area.

The N₂ adsorption/desorption isotherm results and the pore size distribution of the selected catalysts are shown in Figure 1.

3.2. Powder X-ray Diffraction. The powder X-ray diffraction (XRD) technique was used to detect the crystalline structures on the surface of the as-prepared CoOₓ/CeO₂ catalyst samples as well as bulk CeO₂ and synthesized bulk Co₃O₄ for comparison. As shown in Figure 2, only Co₃O₄ and CeO₂ phases in the prepared catalysts were detected. The prominent peaks from fluorite CeO₂ (face-centered cubic structure, PDF #97-002-8709) included 28.3, 33.1, 47.3, and 56.3°, representing (111), (200), (220), and (311) reflections, respectively. For comparison, the XRD pattern of the as-prepared bulk Co₃O₄ sample was also included and was similar to the pattern of spinel Co₃O₄ (PDF #97-006-9369). The spinel Co₃O₄ structure had (220), (311), (400), (511), and (440) reflections at 31.0, 36.6, 44.7, 59.4, and 65.2°, respectively.

For the CoOₓ/CeO₂ catalyst samples, there were no obvious Co₃O₄ patterns at 36.6° under the 5.2 Co/nm² surface density sample. Starting from the 5.2 Co/nm² sample, the 36.6° peak from spinel Co₃O₄ became detectable. With the increased Co surface density, the 36.6° peak intensity also increased, indicating the formation of larger crystalline Co₃O₄ structures on the surface of CeO₂. Other characteristic weak peaks of spinel Co₃O₄ did not show up until the Co surface density reached 18.1 Co/nm². Meanwhile, the prominent fluorite CeO₂ patterns could be found in all of the as-prepared CoOₓ/CeO₂ samples, and no shift was observed in the samples’ XRD

Table 1. BET Results, Surface Densities, Pore Volumes and ICP-AES Results of CoOₓ/CeO₂ Catalysts of Various Co Loadings

<table>
<thead>
<tr>
<th>Co wt % by calculation</th>
<th>Co wt % by ICP-AES</th>
<th>surface area per unit mass (m²/g)</th>
<th>surface density (Co/nm²)</th>
<th>pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>235</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>212</td>
<td>0.2</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>191</td>
<td>1.1</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>3.8</td>
<td>180</td>
<td>2.3</td>
<td>0.14</td>
</tr>
<tr>
<td>6</td>
<td>6.1</td>
<td>173</td>
<td>3.5</td>
<td>0.14</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>158</td>
<td>5.2</td>
<td>0.13</td>
</tr>
<tr>
<td>10</td>
<td>10.5</td>
<td>143</td>
<td>7.1</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>21.7</td>
<td>113</td>
<td>18.1</td>
<td>0.11</td>
</tr>
<tr>
<td>30</td>
<td>29.1</td>
<td>98</td>
<td>31.3</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Figure 1. (a) N₂ adsorption (close symbol)/desorption (open symbol) isotherms of selected CoOₓ/CeO₂ samples. (b) Pore size distributions of selected CoOₓ/CeO₂ samples. $P/P_0 = 1$ atm.

Figure 2. XRD patterns for CoOₓ/CeO₂ catalysts of various Co surface densities. The values of the surface density (their correspondence to the Co loading is in Table 1) are shown on the right.

The Journal of Physical Chemistry C

Article

DOI: 10.1021/acs.jpcc.8b12442

J. Phys. Chem. C XXXX, XXX, XXX–XXX
patterns compared to pure CeO$_2$. This result suggests that, for all of the as-prepared CoO$_x$/CeO$_2$ samples, ranging in surface density from 0.2 to 3.13 Co/nm2, impregnated Co was not substituted for Ce$^{4+}$ in the CeO$_2$ structure or a solid solution (e.g., Co$_{x}$Ce$_{1-x}$O$_2$) material was not formed. 40 It is reasonable to conclude that CeO$_2$ was stable and retained its crystalline structure (no structural changes in the fluorite CeO$_2$ lattices), whereas the precursor Co(NO$_3$)$_2$ converted to CoO and Co$_3$O$_4$ with CeO$_2$ interaction after calcination.

3.3. Raman Spectroscopy. The Raman spectroscopy technique has been extensively used for identifying the molecular structure of supported metal oxide catalysts and nanosized crystal formation of surface metal oxide.3,27,61,62 Raman spectra of all of the prepared samples, including pure CeO$_2$, calcined Co(NO$_3$)$_2$ (denoted as Co$_3$O$_4$), and bulk CoO, are shown in Figure 3. The Raman spectra showed that up to 2.3 Co/nm2 surface density samples, the broad and strong bands at 460 cm$^{-1}$ are dominant. The 460 cm$^{-1}$ band is widely accepted as the symmetrical stretching of the Ce−O bond in F$_2$g vibration of fluorite CeO$_2$.63,64 Also, there was another weak and broad band at ~691 cm$^{-1}$, which could be assigned to the D-band vibration of CoO.65 The D-band vibration of CeO$_2$ is believed to be associated with Frenkel defects and oxygen vacancies due to the presence of Ce$^{3+}$ ions in the CeO$_2$ lattice.66 Starting from the 2.7 Co/nm2 catalyst sample, a band at ~691 cm$^{-1}$ was observed in the Raman spectra and this peak could be assigned to the A$_{2u}$ vibration in Co$_3$O$_4$. Other weaker bands around 194 cm$^{-1}$ (weak, F$_{2g}$-mode), 484 cm$^{-1}$ (medium, E$_g$-phonon mode), 520 cm$^{-1}$ (medium, F$_{2g}$-mode), and 618 cm$^{-1}$ (weak, F$_{2g}$-mode) were also noticed to appear from 3.5 Co/nm2.67 Although these bands were also observed in the CoO spectrum, all peaks were much broader than those in the Co$_3$O$_4$ spectrum. It is worthwhile to note that the Co$_3$O$_4$ crystalline peak was not clearly detected until 3.5 Co/nm2 in XRD spectra (Figure 2). This difference between the Raman and XRD results indicated that the Co$_3$O$_4$ nanocrystalline structure was already formed in the 2.7 Co/nm2 sample, but the crystalline size might not be large enough to be detected by powder XRD. Based on the Raman spectroscopy results, the monolayer coverage of the prepared CoO$_x$/CeO$_2$ is expected to be between 2.3 and 2.7 Co/nm2. Although both XRD and Raman spectroscopy provided information on monolayer coverage and crystalline structure formations of surface species, the electronic structure of surface species (e.g., the oxidation state of Co) was not clearly identified. Changes of Co oxidation states under ex situ and in situ conditions were investigated by X-ray absorption spectroscopy (XAS) and reported below (Section 3.4).

3.4. X-ray Absorption Spectroscopy. To unveil the oxidation state–activity relationship, ex situ and in situ XAS experiments were performed. Multiple measurements were carried out to investigate the oxidation state of Co species in CoO$_x$/CeO$_2$ catalysts with different Co loadings, under reaction conditions, and compared between fresh and used samples (e.g., 7.1 Co/nm2). As shown in Figure 4a, the XANES spectra of samples with low surface density (0.2 Co/nm2 and 1.1 Co/nm2 samples) are quite unique, having features different from those of CoO and Co$_3$O$_4$. But for these two samples, the edge region of XANES spectra is resembling that of CoO, suggesting that in these two samples Co is most likely in the 2+ state. With the increase of the surface density, the XANES spectra transform to resemble that of Co$_3$O$_4$. Comparing with the activity test results in the following section, XANES result suggested that Co with a higher oxidation state could be the reason for the higher catalytic activity. Figure 4b showed XANES result of the used 7.1 Co/nm2 sample in comparison with the fresh 7.1 Co/nm2 sample. The used sample showed a significantly different spectrum from that of the fresh sample, indicating that the oxidation state of Co species underwent a partial transformation from the Co$_3$O$_4$-like state to the CoO-like state after the reaction.
activity and XANES results clearly explained that the oxidation state of Co played an important role in governing the NO reduction by CO reaction and was directly related to the catalyst deactivation.

Figure 5 showed the result of in situ XANES during the NO reduction by CO using the 7.1 Co/nm² sample at different temperatures. Helium (He) gas at RT → He gas at 400 °C → NO + CO at 400 °C → 300 °C to 100 °C → NO + CO at RT. As shown in Figure 5a, the XANES spectra under helium at RT and 400 °C, and those under reacting gases (NO + CO) at 400 and 300 °C were very similar and almost identical to that of CoO₂. When the temperature decreased to 200 °C and below 200 °C, the spectra changed and became more similar to that of CoO. The presence of several isosbestic points, marked by dashed-circles in Figure 5a, indicated that the sample transformed directly from one phase to another. Furthermore, because the spectra for bulk Co₃O₄ and CoO oxides showed the same isosbestic points, it could also be concluded that the catalyst structure changed within the range of structures from pure Co₃O₄ and CoO. The linear combination analysis was then used to determine the concentrations of Co₃O₄ (starting phase) and CoO (final phase) under different conditions.

Figure 6. Catalytic activity results for NO reduction by CO reaction over CoOₓ/CoO₂ catalysts. (a) NO conversion under different temperature conditions, (b) N₂O production under different temperature conditions, (c) CO conversion under different temperature conditions, (d) CO₂ production under different temperature conditions. Reaction conditions: 50 mL/min (500 ppm) NO, 50 mL/min (500 ppm) CO balanced with argon, total flow rate 200 mL/min. ~40 mg of sample was used.
changes are plotted in Figure 5b as well. When combined with the result of the catalytic performance of this catalyst, this trend again supported the hypothesis that the reduction of Co to the 2+ state might be the reason for the lowered NO and CO conversion.

3.5. Catalytic Activity. The relationship between the molecular structure and catalytic activity of CoOₓ/CeO₂ catalysts was investigated for the reduction of NO by CO. The Co loading and temperature dependences of NO conversion, CO conversion, N₂O production, and CO₂ production are shown in Figure 6. The main reaction products were N₂O, N₂, and CO₂. Note that no NO₂ production under the conditions of this experiment was observed. As shown in Figure 6a,c, bulk CeO₂ and bulk Co₃O₄ showed very low NO and CO conversion. In the case of very low Co loading samples, such as 0.2 Co/nm², catalytic activity was improved continuously with increased reaction temperature up to 250 °C. Although NO conversion increased significantly, especially at ≥250 °C, NO conversion over 1.1–3.13 Co/nm² catalysts increased up to 300 °C and then leveled off or decreased at >300 °C. Although ≥2.7 Co/nm² samples already contain the crystalline CoOₓ structure (Figure 3), it did not decrease NO conversion.

Interestingly, for all of the CoOₓ/CeO₂ catalyst samples, the production of N₂O depended highly on the reaction temperatures (Figure 6b). N₂O concentrations increased continuously with increased reaction temperature up to 250 °C and then decreased at higher temperatures (>250 °C). This result indicated that at >250 °C, the catalyst became very active for N₂O decomposition into N₂ thus led to the decrease in N₂O production. These results corresponded to the well-accepted two-step reaction process

\[2\text{NO} + \text{CO} \rightarrow \text{N}_2\text{O} + \text{CO}_2 \] \hspace{1cm} (4)

\[\text{N}_2\text{O} + \text{CO} \rightarrow \text{N}_2 + \text{CO}_2 \] \hspace{1cm} (5)

The observed N₂O formation–decomposition as a function of reaction temperature was matched well to previous studies. Xue et al.\(^5\) reported that less than 10% N₂O was consumed at 150 °C using the CoₓO₄/CoₓO₃/CoO catalysts, whereas ∼40% N₂O was reduced at 200 °C. Liotta et al.\(^2\) also reported that for CoₓO₄/CoₓO₃ catalysts, 50% of the N₂O was converted at ∼250 °C and 100% of the N₂O was converted at ∼300 °C. At very high reaction temperatures, 700–850 °C, Iwanek et al.\(^6\) reported that N₂O decomposition over a series of CoₓO₄/CoₓO₃ catalysts increased with increasing reaction temperature.

Figure 6c,d shows that CO conversion increased monotonically with increased reaction temperature, and all the consumed CO was converted to CO₂ by NO (eq 4) and N₂O (eq 5). Compared to NO conversion, CO conversion was lower (or similar) at ≤300 °C and higher at >300 °C. This result, especially ≤300 °C, agrees with the findings from the literature over supported Pd catalysts. Cusol et al.\(^7\) tested Al₂O₃/SiO₂ supported Pd and Mo–Pd catalysts for the NO reduction by CO at 523–573K (250–300 °C) and claimed that the NO conversion was always higher than that of CO due to the N₂O formation. The authors also observed higher N₂O selectivity than that of N₂, which is different from our results at 300 °C. As shown in Figure S1, at ≥300 °C, N₂ selectivity over the series of CoₓO₄/CoₓO₃ catalysts was much higher than that of N₂O. Therefore, the N₂O selectivity does not always follow the NO conversion ratio although it is closely related to the reaction temperatures. From the results so far, it can be concluded that: (1) The NO conversion with varied Co loadings follows the trend: 2.3–31.3 Co/nm² (monolayer and over-monolayer) > 1.1 Co/nm² (sub-monolayer) > 0.2 Co/nm² (very low Co concentration) > bulk Co₃O₄ > bulk CeO₂; (2) for most CoₓO₄/CoₓO₃ catalysts, NO conversion increased with increased reaction temperature up to 300 °C; (3) at lower temperature (up to 250 °C), N₂O formation is favorable, whereas at higher temperature (>250 °C), N₂ formation is favorable.

To investigate the stability of the catalyst, the 7.1 Co/nm² sample was used for the time-on-stream test. Figure 7 illustrates that NO and CO conversions decreased slightly after reacting under 300 °C for 8 h. It is speculated that the decreased NO and CO conversion could be ascribed to the changes of the molecular or electronic structure of the catalyst. Figure S2 showed the Raman spectra of the 7.1 Co/nm² sample before and after the reaction. Compared to the fresh sample’s spectrum, the used sample also contained a band at 460, 484, 520, and 691 cm⁻¹, but with changed peak intensities. Specifically, the used sample’s Raman peak intensity ratio of I₄⁶⁰cm⁻¹/I₅₂⁰cm⁻¹ increased compared to the fresh sample. It was also observed that the peak intensity and broadness of the band around 520 and 618 cm⁻¹ of the used sample were very similar to the CoO spectrum. From the Raman spectra, it can be concluded that both molecular and electronic structures of the catalyst changed after the reaction. From previous literature, catalyst deactivation could be caused by the change of the Co oxidation state and deposition of carbonate species.\(^4\)\(^1\)\(^7\)\(^0\)\(^7\)\(^2\)\(^7\)\(^3\) Because most reaction temperatures in this work were higher than that of carbonate desorption (∼100 °C),\(^7\)\(^3\) it could be ruled out in the current work.

3.6. In Situ Diffuse Reflectance Infrared Transform Spectroscopy (in Situ DRIFTS). In situ DRIFTS was used to provide an insight into the intermediate species during the NO reduction by CO reaction and possible reaction mechanisms. Figure 8 shows the adsorption spectra during the NO reduction by CO on the 2.7 Co/nm² sample as a function of reaction temperatures (25–400 °C). Several surface species’ bands due to NO and CO adsorption can be observed. In Figure 8a, IR bands were observed at 844 cm⁻¹ (from CO adsorption\(^7\)\(^6\)), 1013 cm⁻¹, and 1612 cm⁻¹ (O–N–O symmetric vibration in the bridging bidentate nitrate
Figure 8. In situ DRIFTS spectra of the 2.7 Co/nm2 sample. (a) 800−1800 cm$^{-1}$ region and (b) 1800−2400 cm$^{-1}$ region. Reaction conditions: 10 mL/min (5% CO in He balance) and 10 mL/min (5% NO in He balance), total flow rate, 20 mL/min. ~50 mg of samples were used. For "after pretreat", the conditions were in Ar atmosphere and at room temperature.

In the case of bulk Co$_2$O$_4$, it can be noticed that there were barely any surface intermediate species during the NO reduction by CO, except for the bidentate nitrate at 1612 cm$^{-1}$ (Figure S4a), which disappeared after 100 °C, this is also in accordance with bulk CeO$_2$ and the 2.7 Co/nm2 sample. The difference amount of intermediate species on Co$_3$O$_4$ and other tested samples was possibly because Co$_3$O$_4$ is not a porous material like CeO$_2$, resulting in less positions/vacancies for gas adsorption. The bands of NO and CO were observed up to 400 °C and peak intensity decreased slowly with increasing reaction temperature. N$_2$O and CO$_2$ bands in bulk Co$_3$O$_4$ spectra were observed from 200 °C which are similar to that of CoO$_2$/CeO$_2$. The band intensity of N$_2$O and CO$_2$ in bulk Co$_3$O$_4$ was much higher than that of bulk CeO$_2$ and this result matched the concentration results in Figure 6b,d.

4. DISCUSSION

The molecular and electronic structure—catalytic activity relationship over a series of Co$_x$/CeO$_2$ catalysts has been investigated using both conventional (e.g., XRD and Raman) and advanced spectroscopic techniques (e.g., in situ XAS) and advanced spectroscopic techniques (e.g., in situ XAS). Specifically, the comparison among all results obtained for samples with different Co weight loadings from 0.2 to 31.3 Co/nm2, the fresh and used catalysts of 7.1 Co/nm2, as well as the temperature-dependent data from 100 to 400 °C, revealed one common property for all investigated conditions, that is, the catalysts with a higher Co oxidation state (+3) have higher catalytic activity in the NO reduction by CO reaction.

With ex situ Raman and XANES, we were able to identify the molecular structure and the Co oxidation state (e.g., +2 and +2/+3) in CoO$_x$/CeO$_2$ catalysts with different Co loadings. In both Raman and XANES results, the structure of CoO$_x$ was clearly observed starting from the 2.3−27 Co/nm2 sample (Figures 3 and 4a), which corresponded to the activity results. Moreover, in the case of the 1.1 Co/nm2 sample, the XANES spectrum showed an intermediate state between CoO and Co$_3$O$_4$, which explained its slightly lower activity results than other samples from 2.3 to 31.3 Co/nm2. It is worthwhile to highlight that the XANES provided more precise information on monolayer coverage in this series of
CoO/\textit{CeO}_2 catalysts than Raman spectroscopy or XRD result. XAS showed the strong feature of CoO\textsubscript{3} crystal formation in the 2.3 Co/nm2 sample (Figure 4a), whereas Raman spectroscopy results showed that the monolayer coverage for CoO\textsubscript{3}/\textit{CeO}_2 is in between 2.3 and 2.7 Co/nm2 (Figure 3). Recently, Peck et al.27 collected data from literature studies for the surface density values of CoO\textsubscript{3} formation in the CoO\textsubscript{3}/\textit{CeO}_2 catalysts and reported the onset of monolayer formation using the XRD, Raman, and XPS. The authors concluded that the Raman spectroscopy results are in good agreement with the XPS (surface sensitive technique) data, and the monolayer coverage is just below 2.58 Co/nm2, which matches well with our Raman data. Although the inhomogeneity of the surface (CoO\textsubscript{3}) on ceria support cannot be completely ignored, and CoO\textsubscript{3} microcrystalline formation under the sub-monolayer coverage may also exist, it is reasonable to say that XAS showed a higher sensitivity in detecting the CoO\textsubscript{3} microcrystals than other spectroscopic techniques used in this work.

Moreover, samples with \(\geq 2.3 \) Co/nm2 surface density showed significantly higher NO and CO conversions in the NO reduction by CO reaction compared to the lower Co density samples, bulk CeO\textsubscript{2} and bulk CoO\textsubscript{3} (Figure 6). To understand the inherent activity of CoO\textsubscript{3}/\textit{CeO}_2 molar rates of the reaction (moles of NO converted by each mole of Co in unit time) were calculated at 150 °C where NO conversion is <20% to satisfy the differential reactor conditions.

As shown in Figure 9, the molar rate increases monotonically with increasing Co surface density and then decreases at higher than 2.7 Co/nm2 samples. As shown in the Raman and XANES results (Figures 3 and 4), the samples with the surface density between 2.3 and 2.7 Co/nm2 were believed to have monolayer coverage of CoO\textsubscript{3}. Based on the molar rate and spectroscopy results, it is speculated that increasing the number of Co--O--Ce linkages (or higher dispersion of CoO\textsubscript{3}) and the small size of the CoO\textsubscript{3} crystalline structure can improve the inherent catalytic activity due to the electronic metal support interaction. However, further increase of the Co content (\(\geq 3.5 \) Co/nm2), which forms a large size of the crystalline CoO\textsubscript{3} structure, will lead to a decreased catalytic activity.

By comparing the N\textsubscript{2}O formation with different Co loading samples as a function of reaction temperature, it was observed that N\textsubscript{2}O formation had similar trends, although absolute values depended on the Co surface density, that is, N\textsubscript{2}O production increased up to 250 °C and then decreased at higher temperatures (>250 °C) as shown in Figure 6b. Deng et al.29,82 investigated the catalytic performance for the NO reduction by CO reaction over a series of Ce\textsubscript{20}M\textsubscript{1}O\textsubscript{2} (M = Zr, Cr, Mn, Fe, Co, Sn; Ce/M molar ratio = 20:1) composite oxides and Cu supported on composite catalysts. Although the authors used different catalyst synthesis methods and coprecipitation methods, N\textsubscript{2}O (or N\textsubscript{2}) selectivity result matched well with our N\textsubscript{2}O formation trend and the highest N\textsubscript{2}O (or lowest N\textsubscript{2}) selectivity was obtained at 200 °C. Based on the in situ DRIFT spectroscopy data, it was observed that at lower temperature (<275 °C) nitrate (NO\textsubscript{3}-)/nitrate (NO\textsubscript{3}-) species were formed on the catalyst surface and transformed to N\textsubscript{2}O and N\textsubscript{2}, whereas the adsorption of CO is limited. At higher temperature, \(\geq 275 \) °C, CO adsorption increases which enhances the N\textsubscript{2}O decomposition. From the literature results and the current study (Figures 6b and 8), it can therefore be concluded that NO to N\textsubscript{2} conversion is achieved through a two-step process during the NO reduction by CO: (1) NO converts to N\textsubscript{2}O and (2) N\textsubscript{2}O decomposes to N\textsubscript{2} over both supported and composite transition metal oxides.

In the case of the high Co loading sample, such as 7.1 Co/nm2, the importance of Co oxidation state to NO and CO conversions during the reaction has been noted. Both conversion and in situ XANES results were taken into consideration here. The results of NO and CO conversions as a function of reaction temperature for the 7.1 Co/nm2 sample were compared to the percentage of CoO and CoO\textsubscript{3} species on the catalyst surface calculated from in situ XANES (Figure 10). It is obvious that the CoO\textsubscript{3} percentage, NO conversion, and CO conversion all shared the same trend, suggesting that Co3+ sites should be the active sites in the CoO\textsubscript{3}/\textit{CeO}_2 catalyst. This finding proved that the oxidation state of Co species in the high loading CoO\textsubscript{3}/\textit{CeO}_2 sample plays an important role in the NO reduction by CO reaction.

By comparing the stability test results (Figure 7) and in situ XAS results (Figure 4b), we could reach similar conclusions as well. It shows that catalyst deactivation was closely related to the Co oxidation state. To be specific, the spectrum of the used sample was a mixture of CoO\textsubscript{3} and CoO phases, whereas the fresh 7.1 Co/nm2 sample spectrum only had CoO\textsubscript{3} features. This finding again supported our speculation that during the NO reduction by CO reaction, as reaction time increased, the surface CoO\textsubscript{3} was gradually reduced to CoO by CO. The
reduction from \(\text{Co}_3\text{O}_4 \) to \(\text{CoO} \) was believed to be one of the reasons of the decrease of NO and CO conversions.

Comparing the current studies with the results from literature studies, the \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) catalysts showed competitive NO and CO conversions, although precious metal catalysts (e.g., Pt and Pd) still showed higher activity during the NO reduction by CO reaction (Table S1). The use of supported \(\text{Co}_3\text{O}_4 \) (or other transition metal oxide) catalysts for the NO reduction by CO was not investigated in this level of detail before. To the best of our knowledge, \(\text{CeO}_2 \) support showed higher NO and CO conversion compared to other supports like \(\text{Al}_2\text{O}_3, \text{TiO}_2, \) and \(\text{ZrO}_2 \). Although our finding helps in explaining the relationship between the activity and the structure/oxidation state of the \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) catalysts, further studies of the metal–oxide support interaction will be required to not only understand but also control and, ideally, improve the catalytic activity of the \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) catalyst and other transition metal oxides supported on ceria.

5. CONCLUSIONS

In this study, we have prepared a series of \(\text{Co}_x\text{O}/\text{CeO}_2 \) catalysts, investigated their catalytic activities and stabilities during the NO reduction by CO reaction, and explored the relationship between Co loading (0.2–31.3 \(\text{Co}/\text{nm}^2 \)), Co oxidation state, and catalytic activities. The main conclusions in the work are:

1. Using several spectroscopic techniques, we were able to identify the monolayer coverage of \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) catalysts to be \(\approx 2.7 \text{ Co}/\text{nm}^2 \).
2. The surface structures of different Co loading samples were very different, from Co-like structures in low Co loading samples to \(\text{Co}_3\text{O}_4 \)-like structures in higher Co loading samples.
3. Molar rates were also affected by the Co loadings of the \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) catalysts, and we found that the molar rate of the 2.7 \(\text{Co}/\text{nm}^2 \) (around monolayer) sample was the highest among all of the prepared samples.
4. We also identified the change of Co oxidation states during the reaction process and the higher Co oxidation state (+3) was more active than its lower counterpart (+2) in NO reduction by CO reaction. The oxidation states of surface Co species could play a very important role in determining the catalytic activity in NO reduction by CO reaction.
5. Intermediate species (nitrates, nitrites, carboxylates, etc.) during the reaction process were noticed. A possible reaction mechanism was proposed, where under low temperatures (<250 °C), NO adsorption was favored over CO adsorption. The adsorbed NO can then form nitrates or nitrites and interact with each other or CO to produce \(\text{N}_2\text{O}, \text{CO}_2, \) and \(\text{N}_2 \). At higher temperatures, the oxidation state change of surface Co species created more oxygen vacancies on the catalyst surface, enabling nitrates/nitrites dissociation and CO adsorption. \(\text{N}_2 \) became the major product over \(\text{N}_2\text{O} \) at this temperature region also.

Overall, the obtained spectroscopic and activity results provided a way of investigating the molecular/electronic structure–activity relationship of a wide range of \(\text{MO}_x/\text{CeO}_2 \) (M—transition metal) catalysts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b12442.

Comparison between catalysts found in the literature; Selectivity results in NO reduction by CO reaction; Raman spectra comparison of fresh and used 7.1 \(\text{Co}/\text{nm}^2 \) \(\text{Co}_3\text{O}_4/\text{CeO}_2 \) samples; DRIFTS spectra of bulk \(\text{CeO}_2 \); and DRIFTS spectra of bulk \(\text{Co}_3\text{O}_4 \) (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: taejin.kim@stonybrook.edu.

ORCID

Shuhao Zhang: 0000-0002-4240-3815
Anatoly I. Frenkel: 0000-0002-5451-1207
Taejin Kim: 0000-0002-0096-303X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support for this study from the Department of Materials Science & Chemical Engineering at Stony Brook University through start-up research funding. A.I.F. and Y.L. were supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-FG02-03ER15476. Operations at the BL 2-2 beamline at SLAC were made possible with the support of the Synchrotron Catalysis Consortium, funded by the U.S. Department of Energy Grant No. DE-SC0012335. This research used 8-ID (ISS) beamline of the National Synchrotron Light Source - II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. We thank Dr. Klaus Attenkofer and Dr. Eli Stavitski for their help with XAS measurements at the NSLS-II. We also acknowledge the help for ICP-AES tests from Prof. Alexander Orlov, Prof. Joel Hurowitz as well as Jiajie Cen.

REFERENCES

Lunkenbein, T.; Behrens, M.; Schloegl, G. Mabilon, G.; Leclercq, G. Kinetics of the NO and CO Reaction over Excess Oxygen.

Mechanistic Aspects of the CO+NO and CO+N2O Reactions.

of Kinetic and Spectroscopic Investigations on Three-Way Catalysts: Rhodium Nanoparticle Structure and Rh−−−Support Interaction

Ceria Interaction on Catalytic Activities for NO Reduction

Formation During the Reaction of Simulated Exhaust Streams over

Rhodium, Platinum and Palladium Catalysts.

Detection of Supported Fe and Co Oxides on Ceria to Establish Structure−Activity Relationships for Reduction of NO by CO.

