Integrating Salish Sea Climate Change Stressors and Human Health and Well-Being into Ecological Risk Assessment

Eric J. Lawrence, April J. Markiewicz, and Wayne G. Landis
Institute of Environmental Toxicology, Huxley College of the Environment, Western Washington University

Abstract
Climate change is expected to have widespread impacts on ecosystem services in the Salish Sea. In this ongoing research, we focused on the question of how stressors generated by climate change affect contaminant toxicity to species in the Skagit River watershed. Specifically we assessed how those stressors potentially influence risks to the river’s ecosystem services that, in turn, impact human health and well-being. To answer this question, we are conducting an ecological risk assessment using the Bayesian network Relative Risk Model (BN-RRM). It is a quantitative, probability-based model that calculates complex relationships between ecological variables to provide estimates of risk to valued receptors (endpoints). The Skagit River study area contains important habitats for native salmon species and bald eagles (Haliaeetus leucocephalus). These species provide numerous ecological, economic, cultural, and spiritual benefits to humans. Its floodplains also provide fertile, highly productive croplands, making it an important agricultural center in the region. Pesticide use on croplands in the watershed currently pose risks to these non-target species that may increase in severity with climate change. Increasing water temperature, decreasing dissolved oxygen levels, and changes in seawater pH are of particular concern, as are changing river and stream flows, increasing storm event frequency and intensity, and sea level rise. These stressors have potential to impact human health and well-being endpoints such as human health, water quality, salmon fisheries, tribal cultural and community health indicators, recreation areas, tourism, agriculture, boating, fishing, and shellfish harvesting. The BN-RRM will enable us to calculate the risks posed by various stressors on these select endpoints in the Skagit River watershed due to climate change. Once constructed the BN-RRM can also serve as a useful tool for resource managers and decision-makers as part of an adaptive management process and to direct future research efforts in the watershed, as well as in other watersheds in the Salish Sea region.

Methods
• Risk is the probability actual or relative of an effect to a receptor (endpoint) judged by society to be important (Ayre and Landis 2012).
• Ecological risk assessment is a science for characterizing risk to endpoints from a variety of stressors (Landis and Wiegens 2005).
• The relative risk model (RRM) method for carrying out ecological risk assessment allows for regional scale modeling, grouping stressors by sources, and being spatially explicit (Figure 3, Wiegens et al. 1998, Landis and Wiegens 2005).

Step 1. Gather Data – Make a Map
• Gather data on sources, stressors and habitats that will be mapped out to determine risk regions (Figure 2).
• Determine human health and well-being endpoints based on important stakeholders such as tribes, workers, farmers, businesses, etc. (Figure 5, Donatuto et al. 2016).

Step 2. Conceptual Model
• A conceptual model is used to link ecological variables in a cause and effect chain using the structure of the RRM (Figure 4).

Step 3. Construct Bayesian Network
• The conceptual model is used to construct the Bayesian network using Netica software (Figure 5).
• Bayesian networks are models that relate ecological variables based on probabilistic calculations generated from conditional probability tables.
• Risk to endpoints is calculated as a probability distribution over discrete states.
• Benefits of the BN RRM: it is quantitative at every step and explicit about uncertainty, different data types can be related through probability-based calculations, and they are easily updated as new data become available (Ayre and Landis 2012).

Step 4. Incorporate Regional Climate Change Predictions
• Regionally downscaled general circulation models (GCM) will be used to predict future climate scenarios for temperature, precipitation, and snowpack.
• The BN-RRM will be re-run for each risk region for each climate prediction to see how risk is changed.
• Interactions between toxicant and climate stressors can be related through adverse outcome pathways (AOPs) in terms of toxicant-induced climate sensitivity or climate-induced toxicant sensitivity (Hooper et al. 2013).

Step 5. Sensitivity and Uncertainty Analysis
• Sensitivity of endpoints to various stressors is tested by manually altering starting conditions and endpoint distributions (Marcott 2012).
• Linguistic and epistemic uncertainty from known lack of data is evaluated qualitatively by discussion of input parameters included or not included.

Potential Benefits from Research
• Identification of what ecosystem services are most at risk due to climate change caused effects in the Lower Skagit River Watershed.
• Identification of which stressors and stressor interactions are most important to address as part of an adaptive management process.
• Results may be instructive to risk assessment for the wider Salish Sea region.

Next Steps
• Continue gathering data on ecological variables and regionally downscaled climate model predictions.
• Refine conceptual model.
• Construct Bayesian network.
• Run BN-RRM for each risk region and for each climate prediction and compare results.
• Sensitivity and uncertainty analysis.
• Publication and presentation of results at conferences.

Acknowledgements
Many thanks to Valerie Chu and Lindsay Walls for introductory guidance on risk assessment and the BN-RRM.

Sources