Long Persistent Luminescence Enabled by Dissociation of Triplet Intermediate States in an Organic Guest/Host System

Leixin Xiao, Zhiwei Wang, Chunfeng Zhang, Xiaoyu Xie, Haibo Ma, Qian Peng, Zhongfu An, Xiaoyong Wang, Zhigang Shuai, and Min Xiao

ABSTRACT: Organic guest/host systems with long persistent luminescence benefiting from the formation of a long-lived charge-separated state have recently been demonstrated. However, the photogeneration mechanism of such key charge-separated states remains elusive. Here, we report the identification of intermediate triplet states with mixed local excitation and charge-transfer character that connect the initial photoexcited singlet states and the long-lived charge-separated states. Using time-resolved optical spectroscopy, we observe the intersystem crossing from photoexcited singlet charge-transfer states to triplet intermediate states on a time scale of ∼52 ns. Temperature-dependent measurements reveal that the long-lived triplet intermediate states ensure a relatively high efficiency of diffusion-driven charge separation to form the charge-separated state responsible for LPL emission. The findings in this work provide a rationale for the development of new LPL materials that may also improve our understanding of the mechanism of photon-to-charge conversion in many organic optoelectronic devices.

Organic molecules displaying long persistent luminescence (LPL) are attracting rapidly growing interest because of their potential applications as large scale and flexible paints, biomarkers, and display devices. Conventionally, phosphorescence from a triplet excited state is the long-lived emission component from organic luminogens. Stabilizing the triplet state by different strategies can provide the ultralong phosphorescence with a lifetime up to the order of seconds at room temperature. Organic guest/host systems with electronic donors and acceptors have recently been proposed to further extend the persistence of luminescence. This strategy holds the potential to dramatically enlarge the family of LPL materials by combining different donors and acceptors.

In the guest/host systems, the intermolecular charge-separated (CS) states have been suggested to account for the exceptionally long-lived emission arising from the recombination of encountered electrons and holes. The CS state is composed of a radical cation of the donor and radical anion of the acceptor. However, the formation mechanism of such a CS state in organic LPL materials remains elusive. The photogeneration mechanism for charge separation in donor/acceptor blends in organic photovoltaic (OPV) materials has been extensively studied. In the widely studied polymer/fullerene systems, photon absorption creates local excitations in the donor, which form interfacial charge-transfer states with singlet character (1CT) through an electron-transfer process. The 1CT states then dissociate into the CS states of free charges. However, the lifetime of such a CS state is limited to the time scale of microseconds or shorter because of the bimolecular recombination in OPV blends. Efficient LPL has been observed on a much longer time scale, suggesting that LPL in organic guest–host systems has a different charge separation mechanism.

In this work, we study the mechanism responsible for LPL in a model guest/host system consisting of the electron-donating molecule N,N,N′,N′-tetramethylbenzidine (TMB) and electron-accepting molecule 2,8-bis(diphenylphosphoryl)dibenzothiophene (PPT) by probing the dynamics of photoexcited carriers in TMB/PPT blends on time scales from subpicoseconds to seconds using transient absorption (TA) spectroscopy. We identify a new channel for photogeneration of the CS states through long-lived triplet intermediate states. The 1CT states generated by photon absorption undergo the process of intersystem crossing (ISC) to form intermediates (Figure 1A) of mixed locally excited triplet states (3LE) of TMB and triplet CT states (3CT). The intermediate triplet states are long-lived, which allows the efficient formation of CS states driven by the diffusion of radical anions in the PPT matrix (Figure 1A), enabling the LPL in the TMB/PPT blend.
blends. The identification of such a triplet channel for long-lived charge separation may guide the search for high-performance LPL emitters and spur the development of organic optoelectronic devices using the triplet channel for photon-to-charge conversion.

Emission spectra from TMB/PPT blends with different molar ratios of TMB are compared with those of neat films of TMB and PPT in Figure 1B. The emission wavelengths of the blend films are much longer than those of the neat films of TMB and PPT, which is consistent with the involvement of CT states. The longer persistence of photoluminescence (PL) emission was observed for the samples with a lower ratio of TMB (Figure 1C), implying that carrier diffusion plays an important role in the LPL of the blends.

We perform transient optical measurements to study the carrier dynamics from primary excitation to LPL emission. Figure 2 shows the experimental data obtained for a blend sample with a 10 mol % ratio of TMB on different time scales. In the initial stage, photoexcitation in the TMB/PPT blend causes the formation of the 1CT state as observed in the femtosecond-resolved TA spectra. As a consequence of charge transfer, the excited-state absorption (ESA) features of the blend film (Figure 2) show marked differences from those in the neat TMB and PPT films (Figure S1). The ESA feature in the near-infrared region shows a red shift from 940 nm for the neat TMB film to 1050 nm for the blend (Figure 2A). ESA at 1050 nm is similar to the reported spectral characteristic of the free radical cation of TMB (TMB+). However, the TMB+-like ESA signal at this stage is not caused by the CS state in the blend, as suggested by the dynamics on the nanosecond time scale (Figure 2B–D). The ESA signal at 1040 nm decays exponentially with a characteristic lifetime of ~52 ns, which is independent of pump fluence (Figure S2). This result indicates that bimolecular recombination, a character of free charges of the CS state, is absent. It is reasonable to assign the ESA signal to the 1CT state with relatively weakly interacting TMB+ and
PPT−. The broadband nanosecond-resolved TA signal can be reproduced by the global fitting algorithm considering a spectral transfer with a lifetime of \(\sim 52\) ns (Figure S3), suggesting the formation of a new excited state from the \(1\)CT state.

The new excited species exhibits an ultralong lifetime, persisting for \(>100\) \(\mu\)s (Figure 2B,C), which is likely caused by the ISC from the \(1\)CT state to an intermediate triplet state. The ESA signals for the two excited species are caused by optical transitions from the \(1\)CT state to higher singlet states and from the intermediate triplet state to higher triplet states, exhibiting a dramatic spectral transfer. This assessment is supported by the time-resolved fluorescence (TRFL) spectrum (Figure 2D) recorded for the blend film, which contains a decay component with a similar lifetime of \(\sim 50\) ns caused by a transition from the \(1\)CT state to a state with different spectral character (inset of Figure 2D). The wavelength of fluorescence emission from the \(1\)CT state (2 ns) is slightly shorter than that of phosphorescence (400 ns) from the intermediate triplet state (inset of Figure 2D). The involvement of a triplet intermediate is explicitly confirmed by the electron spin resonance (ESR) measurements (Figure 3A). In addition to the signal in the \(g = 2\) region induced by radicals, a substantial signal of the triplet signature near 1600 G under photo-irradiation in the \(g = 4\) region is observed for the blend film, which is not present in the ESR spectra of the neat films (Figure 3). Such a new feature strongly supports the formation of a triplet intermediate in the TMB/PPT blend film.

To study the nature of the triplet intermediate, we perform quantum chemical computations to survey the energy alignment of the \(1\)CT, \(3\)CT, and triplet excitations localized at TMB \((D)\) and PPT \((A)\) sites for a TMB/PPT dimer configuration (Figures S4 and S5 for details).

During the thermal fluctuations. However, our further quantum chemical calculations of various typical dimer geometries with different intermolecular distances and/or interactions from molecular dynamics simulations under room temperature still show that the \(3\)LE state of TMB and the \(3\)CT state are always located energetically below the \(1\)CT state (Table S1), supporting our model under realistic conditions. According to the El-Sayed rule, the direct ISC process between \(1\)CT and \(3\)CT states is less efficient than that between \(1\)CT and \(3\)LE states.21,24 The experimental study of the ISC in CT excited states suggests that the ISC rate is dramatically reduced for the states with full CT character.35 It is therefore reasonable to assign the process with a characteristic lifetime of \(52\) ns to the ISC process from the \(1\)CT to the \(3\)LE state at TMB. The small energy difference between the \(3\)LE state at TMB and the \(3\)CT state (Figure 3B) allows efficient conversion between these two triplet states at room temperature. These findings suggest that the triplet intermediate is probably a mixture of the \(3\)LE and \(3\)CT states, which is consistent with the result that the ESA feature was comparable but not the same as that of the \(3\)LE state of TMB in a sample of TMB-doped polymer ZEONOR (Figure S6).

Next, we monitor the charge separation from the intermediate triplet state by recording TA spectra on the time scale from milliseconds to seconds (Figure 4). Panels A and B of Figure 4 show the TA spectra recorded at different time delays. (A) Millisecond-resolved TA spectra at different pump wavelengths. (B) Millisecond-resolved kinetics probed at different wavelengths for a 10 mol % TMB/PPT film. (C) Absorption spectra of PPT− and TMB+ characterized by spectroelectrochemistry measurements. (D) Normalized kinetic curves probed at 1050 nm under different excitation densities of 12, 48, and 96 \(\mu\)J/cm\(^2\). The pump wavelength was 355 nm.

Figure 3. Triplet states generated in a photoexcited TMB/PPT blend film. (A) ESR signals of the blend film and neat films of TMB and PPT recorded at 77 K upon optical excitation at 355 nm. The wavelength of the excitation source was 355 nm. (B) Calculated energy alignment of the \(1\)CT, \(3\)CT, and triplet excitations localized at TMB \((D)\) and PPT \((A)\) sites for a TMB/PPT dimer configuration (Figures S4 and S5 for details).

Figure 4. Charge separation and diffusion dynamics on the millisecond time scale. (A) Millisecond-resolved TA spectra at different pump wavelengths. (B) Millisecond-resolved kinetics probed at different wavelengths for a 10 mol % TMB/PPT film. (C) Absorption spectra of PPT− and TMB+ characterized by spectroelectrochemistry measurements. (D) Normalized kinetic curves probed at 1050 nm under different excitation densities of 12, 48, and 96 \(\mu\)J/cm\(^2\). The pump wavelength was 355 nm.
istry experiments (Figure 4C; see Figure S7 for details). The absorption features of TMB' appear in the infrared band centered at ∼1050 nm and at wavelengths shorter than 500 nm, while the absorption of PPT' consists of a broadband response centered at 750 nm (Figure 4C). Because the absorption of intermediate triplets is in the short-wavelength range centered at 490 nm, the signals probed at 1050 and 650 nm are mainly caused by TMB' and PPT', respectively. The signal probed at 650 nm decays much faster than that probed at 1050 nm, which is probably caused by the unbalanced diffusion of PPT' and TMB' in the blend films. Because the TMB molecules are dispersed randomly and discretely in the PPT matrix, it is reasonable that the diffusion of TMB' is much less efficient than that of PPT'. The remaining concentration of TMB' at the probed spot will be considerably higher than that of PPT' at a late stage (Figure 4A). Such a scenario is further confirmed by temperature-dependent measurements. When the temperature decreases, the diffusion of PPT' slows and the signal of TMB' is less pronounced (Figure S8).

The presence of CS states is also supported by the results of power-dependent measurements (Figure 4D), in which the decay rate increases with an increase in excitation density because of the bimolecular recombination of free charges. In contrast, the power dependence was not observed on the submicrosecond time scale, confirming the charge separation occurs after the ISC process. The observation of different diffusion properties of TMB' and PPT' provides evidence of the involvement of 3CT states (i.e., the banded states of TMB' and PPT') in the triplet intermediates because PPT' cannot be directly generated from 3LE states at TMB. The dissociation of 3CT states induces the charge separation and shifts the equilibrium between 1CT and 3LE states. In addition to charge generation, the phosphorescent emission and reverse ISC processes also lead to the decay of the triplet population, which cause simultaneous removal of TMB' and PPT'. The CS state formed by unbalanced charge diffusion contributes to the observed LPL when the PPT' encounters TMB' in the probed spot through the fluorescence emission from the 1CT states or the phosphorescence emission from the 3CT and 3LE states. The channels for LPL and phosphorescent emission are thus highly sensitive to the competition between carrier diffusion and recombination of 3LE states.

To verify the model proposed above, we compare the temperature dependence of LPL emission in the blend film with that of the phosphorescence emission from the 3LE state of TMB in a sample of TMB-doped polymer ZEONOR. If the triplet intermediates consist of mixed 3LE and 3CT states, their relative weights should vary with the environmental temperature. Considering that the 3LE state is slightly lower in energy than the 1CT state (Figure 3B), the triplet intermediates should contain a larger contribution from the 3LE (1CT) state at a lower (higher) temperature.

We check this assessment by measuring the temperature-dependent light emission from the intermediate triplet state of the blend film (Figure 5). As shown in Figure 5A, in addition to the LPL component with dynamics following the Debye–Edwards law (f^{-3/2} decay profile), an exponential decay component becomes substantial on the time scale of <10 s when the temperature decreases (Figure S9). The exponential decay component can be assigned to the phosphorescence emission from the intermediate triplet state, whereas the decay dynamics is similar to the phosphorescence emission from the 3LE state of TMB (Figure S9). Avoiding the overlap time range (1−20 s), we compare the temperature dependences of the phosphorescence (integration from 0.1 to 1 s) and LPL (integration from 20 to 100 s) emissions in panels B and C of Figure 5. The intensity ratio between LPL and phosphorescence emission increases dramatically with an increase in temperature (Figure 5C), which supports the scenario of charge separation from 3CT states in the blends. With an increase in temperature, the proportion of 3CT states in the triplet intermediates increases and the rate of diffusion of PPT' also increases, resulting in more efficient generation of CS states, which is responsible for the enhanced LPL emission. Nevertheless, the intensity of LPL decreases with an increase in temperature above 300 K, which is different from the temperature-dependent LPL in the inorganic systems.

The phosphorescence emission spectra from the TMB/PPT blend film are also dependent on temperature (Figure 5D,E and Figure S9). At 30 K, the phosphorescence from the blend exhibits a structured spectrum (Figure 5D), which is consistent with the higher relative proportion of the 3LE state because the vibrational progression is mainly caused by the pure LE state.

The emission spectrum becomes less structured at room temperature, which is related to the line width broadening and energy distribution over different energy levels (Figure 5E). Notably, vibronic features can be observed in the emission spectrum from the TMB/ZEONOR blend film. Such a
difference confirms an important contribution of 3CT states to the phosphorescence emission in the TMB/PPT blends at room temperature. In organic guest/host systems, exciplex states due to hybridization of LE and CT states may result in thermally activated delayed fluorescence. $^{42-44}$ Such an exciplex emission is possibly involved in the exponential decay component of light emission in the TMB/PPT system that is not involved in the LPL emission. 45

Previously, it has been suggested that the triplet exciplex states with mixed 3CT and 3LE characters may also be formed at the organic donor/acceptor interfaces. 41,46 However, this is unlikely to be the major channel here because the ratio between the signals of 3CT and 3LE states varies considerably with a change in temperature, which is also consistent with the recently identified effect of the energy gap between the LE and CT states on LPL. 45 The temperature dependences of phosphorescence and LPL emissions strongly support the involvement of mixed 3CT and 3LE states in the organic guest/host system. On the basis of the experimental evidence presented above, the carrier dynamics responsible for the LPL emission in the TMB/PPT blends can be illustrated as shown in Figure 1A. The long-lived 3LE states allow relatively efficient ISC from 1CT states, whereas the 1CT states enable charge separation because of the unbalanced diffusion of cations and anions. The mixed 1LE/1CT states connected the photoexcited singlet states to the long-lived CS states. The decay dynamics of CS states become faster with an increase in the doping level of TMB due to the enhanced encountering probability of charge-separated radicals. The CS states act like the trapping of CS states for LPL emission. More importantly, the identification of a long-lived triplet channel for charge separation suggests an alternative strategy for designing organic architectures for a variety of optoelectronic applications relying on photon-to-charge conversion.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcllett.0c00880.

Materials and methods, control TA measurements of charge dynamics, quantum computational results, spectro-electrochemistry measurements, and temperature-dependent measurements (PDF)

AUTHOR INFORMATION

Corresponding Author

Chunfeng Zhang — National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China; orcid.org/0000-0001-9030-5606; Email: cfzhang@njnu.edu.cn

Authors

Leixin Xiao — National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China

Zhewei Wang — National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China

Xiaoyu Xie — School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Haibao Ma — School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; orcid.org/0000-0001-7915-3429

Qian Peng — China Key Laboratory of Organic Solids and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; orcid.org/0000-0001-8975-8413

Zhongfu An — Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China; orcid.org/0000-0002-6522-2654

Xiaoyong Wang — National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China; orcid.org/0000-0003-1147-0051

Zhigang Shuai — Department of Chemistry and MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Tsinghua University, Beijing 10084, China; orcid.org/0000-0003-3867-2331

Min Xiao — National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China; Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcllett.0c00880

Author Contributions

$^\text{\#}$L.X. and Z.W. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (2018YFA0209100 and 2017YFA0303703), the National Natural Science Foundation of China (21922302, 21873047, 11574140, 91850105, 91833305, and 11621091), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Fundamental...
Research Funds for the Central Universities. C.Z. acknowledges financial support from the Tang Scholar program.

REFERENCES

(4) Zhang, G.; Palmer, G. M.; Dewhirst, M.; Fraser, C. L. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 2009, 8 (9), 747−751.

