
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 1, JANUARY 2004 35

Resonant Spectra of Malignant Breast Cancer Tumors
Using the Three-Dimensional Electromagnetic

Fast Multipole Model
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Abstract—This paper presents an intensive numerical study of
the resonance scattering of malignant breast cancer tumors. The
three-dimensional electromagnetic model, based on the equiva-
lence theorem, is used to obtain induced electric and magnetic
currents on breast and tumor surfaces. The results show that
the nonspherical malignant tumor can be characterized, based
on its spectra, regardless of orientation, incident polarization, or
incident or scattered directions. The spectra of the tumor depend
solely upon its physical characteristics (i.e., shape and electrical
properties); however, their locations are not functions of the depth
of the tumor beneath the breast surface. This paper can be a
guide in the selection of the frequency range at which the tumor
resonates to produce the maximum signature at the receiver.

Index Terms—Breast cancer, computational electromagnetics,
resonance, steepest descent fast multipole method.

I. INTRODUCTION

MEDICAL science has conducted extensive research in
recent years in an effort to detect and cure breast cancer;

however, this disease still remains potentially life threatening
for many women. Researchers have developed and used sev-
eral imaging modalities to detect breast cancer. Among them
are mammography, which is currently considered to be the
most reliable method; ultrasound; and magnetic resonance
imaging, as reported in [1], [2]. In addition, medical applica-
tions have used microwave imaging [3]. The electrical proper-
ties of normal breast tissues, benign and/or malignant tumors,
and the breast skin layer are key issues for this modality.
Research reports the measurements of the electric dielectric
constants of these tissues over a certain range of frequen-
cies [4]–[11]. Recently, microwave tomography has shown
promises in the early detection of breast cancer [12], [13]. In
addition, microwave radar technology has been investigated to
detect and image malignant breast tumors [14]–[24]. Clinical
prototypes for microwave imaging of the breast are presented
in [14]–[17]. The papers [18]–[24] cite the computational elec-
tromagnetic method, the finite-difference time-domain, along
with signal processing techniques to simulate and analyze sev-
eral microwave systems.
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In previous research on the humanitarian anti-personnel mine
detection application using ground penetrating radar (GPR), it
proved to be very difficult to distinguish between the scattered
signal from rough ground where a small plastic mine was buried
and the scattered signal from rough ground without buried mines
[25]–[28]. This difficulty was due to the small size of the mine
relative to the wavelength. In some cases, the soil medium was
very lossy, and in other cases the electrical properties of the
mine were very similar to those of the surrounding dry soil. In
addition, the considerable clutter due to the presence of random
rough ground, inhomogeneous soil, and the presence of benign
objects nearby the target significantly obscured the detection
process.

Similarly, in the breast cancer application, several com-
parable difficulties occur: normal breast tissue is lossy at
microwave frequencies, tumors are very small in cases of early
detection, and the breast tissue is heterogeneous. These factors
make detecting a tumor in the breast as difficult as sensing the
plastic target in the minefield.

The purpose of this paper is to investigate and analyze the
behavior of the signature of the tumor over the frequency range
1–10 GHz with the intent to determine the frequencies at which
the signature reaches its maximum. Several researchers have
reported that dielectric and conducting objects can resonate at
certain frequencies in the electromagnetic spectrum [29]–[40].
When these frequencies are independent of excitation, they are
located in the complex plane and are known as the natural fre-
quencies. Their locations depend only on the size, shape, and
material of the object. On the other hand, these objects can also
resonate upon excitation with a continuous wave at real frequen-
cies, as reported in [29], where Mie solution was used. The res-
onating objects were located in free space in [29]–[37], while
they were imbedded under an interface in [38]–[40]. In [29], the
plane waves excited the immersed object in free space, and the
scattered radiation was monitored as a function of frequency,
in order to obtain their resonance spectrum. This approach is
used here to determine the resonance spectra of malignant tu-
mors located inside normal breast tissue, as cited in [18]. Since
the dielectric constants of malignant tumors are very lossy, they
act as low Q-resonators. Moreover, the magnitude of the scat-
tered waves at resonant frequencies is considerably reduced due
to the absorption of transmitted waves by breast tissue. These
scattered fields exhibit an obvious resonant radiation when a
tumor is present inside the breast. It is important to emphasize
that the current work focuses on lossy objects under an inter-
face, i.e., inhomogeneous lossy medium, while the work pre-
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sented in [29] focused on lossless dielectric objects immersed in
free space. While the Mie solution was used in [29], this paper
utilizes a frequency-domain fast computational electromagnetic
technique. This technique is based on the fast multipole method
hybridized with the steepest descent integration rule (SDFMM)
[41]–[44] and [25]–[28]. In particular, this paper utilizes the
multiple interaction model (MIM) combined with the SDFMM
(MIM-SDFMM [45]) to compute the intensity scattered from
the breast. The MIM-SDFMM is validated by the method of
moments (MoM), as demonstrated in Section III.

Section II discusses the formulations of the electromag-
netic model, Section III discusses the numerical results, and
Section IV summarizes the concluding remarks.

II. METHODS

This research utilized the three-dimensional (3-D) rigorous
electromagnetic model, based on the classical equivalence the-
orem, to simulate the scattering from malignant tumors located
in normal breast tissue. This model was successfully imple-
mented in humanitarian anti-personnel plastic mine detection
[25]–[28]. In this model, the surfaces of the breast and the tumor
are discretized into the Rao, Wilton, Glisson (RWG) triangular
patches [46]. The induced equivalent surface currents are ap-
proximated, using the vector basis functions, and the integral
equations are tested using the same basis functions. A set of
linear system of equations is obtained as [25], [47]

(1)

This system of equations incorporates all interactions between
elements on the breast and tumor surfaces (i.e., and ,
respectively) and elements within the breast and tumor surfaces
(i.e., and ). The vector represents the tangen-
tial components of the incident electric and magnetic fields on
the breast surface. This system of equations needs to be solved
for the unknown current coefficients and excited on the
breast and tumor surfaces, respectively.

The numerical results in Section III are based on computing
the scattered intensity represented by the radar cross section
(RCS) defined as [48]

(2)

where is the scattered electric field, is the incident power
[49], and is the distance from the scatterer (i.e., the breast)
to the observation point. The RCS will be plotted either versus
the frequency or versus the parameter , with ,

(m) as the free space wavelength, and f as
the frequency of the incident wave. The parameter represents
the radius of the sphere or the larger dimension of the prolate
spheroid with .

Solving (1) using the MoM is computationally very expen-
sive. The MoM, however, will be used for validation. The first
method for solving (1) implements the complete SDFMM,
which is computationally inefficient when the depth of the
tumor is large compared with the free space wavelength. The
second method of solving (1) implements the MIM-SDFMM

as discussed in [45]. The latter method solves two separate
linear systems of equations for the unknown coefficients by
exploiting an iterative procedure to update the incident fields
on both the breast surface and the tumor surface . These
two systems of equations are given by [45]

(3a)

(3b)

in which represents the number of multiple in-
teractions between the tumor and the breast surface. The value

implies that the induced currents on the breast surface are
due to the illuminating source and that no interaction took place
with the tumor. The algorithm begins by assuming that no tu-
mors are present in the breast and solving (3a) for the unknown
current coefficients on the breast surface, i.e., . These co-

efficients are due to the tangential incident fields . Conse-
quently, the induced electric and magnetic currents on the breast
surface, i.e., and excite the tumor with the fields
in (3b). These fields are calculated using the near-field surface
integrations given by [48]

(4a)

(4b)

where the total electric and magnetic fields are and
, respectively. The superscripts and represent

fields associated with the vector potentials and , respec-
tively. The symbol represents the unit vector between the
source and observation points which are separated by the dis-
tance . The wave number of the surrounding medium is given
by with the permittivity and permeability and , respectively.
The differential surface element on the breast is represented by

. The next step is to solve (3b) for the unknown coefficients,
i.e., , in order to obtain the electric and magnetic currents

on the tumor surface, and , respectively. This process
is repeated until the surface current solutions converge.

Using the MIM-SDFMM allows calculating the contribution
of each wave interaction between the tumor and the breast inter-
face. This advantage provides insight into the physics involved
in the scattering mechanism between the tumor and breast sur-
face. Moreover, it allows the calculation of the induced currents
on the breast surface due to only the presence of the tumor [45].
This implies that no subtraction process to obtain the signa-
ture of the tumor is used here, leading to faster and more effi-
cient results. In solving (3a), the SDFMM is used to convert the
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impedance matrix to a sparse one. Note that the order of
(associated with the breast) is much larger than the order

of the matrix (associated with the tumor). This is due to
the small size of the tumor compared with the breast surface;
therefore, it is more efficient to use the SDFMM to solve (3a)
and the MoM to solve (3b). The work reported in [45] discusses
in detail the computational complexity of the MIM-SDFMM.

The electric and magnetic currents induced on the breast sur-
face due to the tumor alone are ,

and , respectively. Note that

the driving surface currents and are induced on the
breast due to the illuminating source (i.e., transmitting antenna),
assuming that no tumors are located inside the breast.

The electromagnetic model discussed above does not incor-
porate the inhomogeneous breast tissue or the skin thickness
(i.e., the skin layer). However, the model incorporates the in-
terface between the air and the breast tissue where the tumor is
located. In other words, it accounts for three different homoge-
neous regions.

It is important to emphasize that the SDFMM is a surface in-
tegral equation based algorithm as discussed in [25]–[28] and
[43]–[45]. There is no restriction on the shape of the object, as-
suming that its surface can be disretized into triangular patches.
Moreover, the SDFMM does not rely on the symmetry of the
object, which is different from the MoM used in [39]. How-
ever, the SDFMM cannot simulate a medium if its dielectric
constant varies gradually from one point to another. In this case,
the volume integral equations could be used instead, where the
volume of the scatterer is discretized into volumetric elements.
The main advantage of the SDFMM is its computational
complexity for both the CPU time and computer memory, where

is the total number of the surface current unknowns, com-
pared with the MoM which requires to solve the same
problem (per iteration).

The electrical properties of breast tissue, the geometry of the
breast, the validation with the Mie’s solution, the effect of the
air-interface, and the computational requirements are key issues.
An in depth discussion of these issues follows.

A. Electrical Properties of Breast Tissue

The relative dielectric constants of malignant tumors and
normal breast tissue come from measurements reported in the
literature [4]–[11]. The frequency dependence of the dielectric
constants of normal breast tissue and malignant
tumors are plotted versus the frequency from 1 to 10 GHz, as
shown in Fig. 1. These results are calculated using [20, eq.
(1)], which was obtained by curve fitting published measured
data up to 3 GHz. Section III will utilize a variety of dielectric
constants obtained either from the actual measurement data
[4]–[11] or from the curve fitted data of Fig. 1.

B. Breast Geometry

This paper simulates two different geometries of the breast
as shown in Fig. 2. In Fig. 2(a), the breast surface is assumed
flat, which represents an ideal situation [18]. However, in
Fig. 2(b), the breast surface is a 3-D curved geometry, which
can represent a patient lying on her back [20], [21]. In the
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Fig. 1. The relative dielectric constant (" = " � j" ) versus frequency for
normal and malignant breast tissue obtained from [20].

latter case, the geometry is assumed sinusoidal described by
; is the breast height,

and where
and are the and dimensions, respectively. If the patient
is lying on her stomach, the breast will have a more cylindrical
shape [22], [23], which will not be considered in Section III.

C. Validation With Mie’s Solution [29]

It is important to examine the resonant radiation of a dielectric
sphere immersed in air before investigating the more compli-
cated scatterer which contains a sphere immersed in a different
medium, as shown in Fig. 2.

The relative dielectric constant simulates
the electrical property of a malignant tumor which implies that

and the conductivityat S/m at
GHz [18], [19], [22]. In Example 1, the three dielec-

tric constants of the sphere are: (lossless),
(lossless [29]), and (lossy) as shown in Fig. 3.
These results are obtained using the MoM where the sphere is
discretized into 764 triangular patches leading to 2292 electric
and magnetic unknown coefficients. The plane wave is used for
excitation at normal incidence when the electric field
is polarized in the -direction as shown in Fig. 3. The electric
field in this case is parallel to the plane of incidence (
plane), which represents the vertical polarization (V-pol.). All
results of Fig. 3 are for the copolarized scattered waves in the
backscatter direction. The results show that the RCS of loss-
less spheres exhibits sharp resonant scattering upon varying the
parameter . The results of the lossless sphere with
show full agreement with those obtained using the Mie solution
reported in [29]. Note that the magnitude of the RCS is greatly
reduced when the sphere becomes lossy . More-
over, the sharp peaks are not shown for the lossy sphere (see
Fig. 3).

D. Effect of the Air-Interface

Example 2 investigates the effect of the presence of the air-in-
terface on the observed resonance scattering. A lossless sphere
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Fig. 2. Cross section of a spherical tumor located beneath (a) a flat air-breast interface showing multiple interactions with n = 2. (b) Side view of the 3-D curved
breast geometry.
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Fig. 3. Copolarized backscatter RCS versus the normalized radius ka of a
sphere immersed in air for three cases with relative dielectric constants as " =

50� j12, 50, and 36. Normal incidence and V-polarization.

with is located beneath the flat interface of Fig. 2(a) at
depth , measured from its center. The surrounding medium is
slightly lossy with . To eliminate the edge excita-
tions, the interface is illuminated using plane waves tapered to-
ward the edges of the flat surface, i.e., using a Gaussian beam as
discussed in [25] and [50]. The incident waves are in the normal
direction with the electric field polarized in the -direction, i.e.,
perpendicular to the plane of incidence ( plane), which rep-
resents the horizontal polarization (H-pol.). The RCS for only
the immersed sphere is plotted versus in the backscatter di-
rection as shown in Fig. 4.

The dimensions of the modeled flat surface (i.e ) are
and the sphere is located beneath the surface

at depths and , respectively, as shown
in Fig. 4. This paper utilizes the incident Gaussian beam with a
width equal to . The flat interface is discretized into 4802
triangular patches (i.e., the discretization rate is ) leading
to 14 210 electric and magnetic unknown coefficients. For each
depth value , the MIM-SDFMM computer code was run 81
times for values ranging from 0.2 to 1 with a step equal to
0.01.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Depth of sphere 
d = - 0.3 0 
d = - 0.6 0 

R
C

S 
/m

2

ka

λ
λ

Fig. 4. Copolarized backscatter RCS versus the normalized radius ka of the
sphere only. The flat interface depicted in Fig. 2(a) is used with " = 1 (air),
" = 2.0�j0:1, and " = 50 at two depths (d = �0.3� and �0.6� ).
Normal incidence and H-polarization.

In Fig. 4, the RCS results clearly exhibit sharp peaks at certain
values of the parameter despite the presence of the air-inter-
face. It is important to mention that finer resolution of could
lead to increasing the magnitude of the peaks. The results indi-
cate that the magnitude of the sharp peaks decreases when the
depth increases, as shown in Fig. 4.

E. Computational Issues

It is important to emphasize that varying the parameter in
each run requires solving both (2a) and (2b) once except when
the computer code begins; then solving (2a) twice is required.
This saves more than 30% of the computation time. The total
CPU required to obtain these solutions is approximately 22 h
for a full curve in Fig. 4 (i.e., for 81 runs). The computations
were conducted on the Compaq Alpha Server (GS140 EV6)
with 667-MHz clock speed. Moreover, to speed up the compu-
tations, only a single interaction between the object and the in-
terface is considered (i.e., ), as discussed earlier. Insignif-
icant differences were observed when higher order interactions
were considered (i.e., for ). The same observation
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was reported in [45], particularly when the surrounding medium
was lossy. This justifies accounting only for the first interaction
(i.e., ) in all numerical results presented in Section III.

III. NUMERICAL RESULTS

This section presents several examples of the resonance
spectra of malignant tumors located in normal breast tissue.
Examples 3–9 investigate the effect of the shape, depth, elec-
trical properties, and orientation of the tumor. Moreover, this
paper looks into the effect of changing the electrical properties
of normal breast tissue, breast geometry, polarization, and the
direction and frequency of the incident electromagnetic waves.
The discussion is as follows:

A. Depth of the Tumor

In Example 3, a lossy medium is assumed in order to simu-
late normal breast tissue properties at microwave frequencies.
The dielectric constant is assumed which im-
plies that and S/m at GHz [18], [19],
[22]. The lossy sphere of dielectric constant
to simulate the malignant tumor, is located under the flat inter-
face of Fig. 2(a) at a variety of depths from to

, as shown in Fig. 5(a). The copolarized backscat-
tered RCS of the tumor alone clearly exhibits a resonance scat-
tering behavior even when it is located in a lossy medium. These
results show that the resonance phenomenon of the tumor sur-
vived the presence of the interface and the lossy surrounding
environment. However, the depth of the tumor affected the mag-
nitude of the spectra, but not the resonance locations.

B. Electrical Properties

It is also important to investigate a variety of electrical proper-
ties of breast tissue and tumor on resonant scattering, as shown
in Fig. 5(b). The dielectric values are obtained from the mea-
surements reported in the literature as: 1) ,

at GHz [18], [19], [22]; 2)
, at GHz (the lower

limit values reported in [8, Table 5]); 3) ,
at GHz (for patient no. 37 reported in

[8, Table 2]); 4) , at GHz
reported in [10]; and 5) ,
at GHz (the upper limit values reported in [8, Table 5]).
As expected, when the normal breast tissue became more lossy,
the scattering magnitude at resonant frequencies (i.e., the max-
imum points) decreased, as shown in Fig. 5(b).

C. Multiple Frequencies

Example 4 investigates resonant scattering versus the fre-
quency from 1 to 10 GHz. This example utilizes the dielectric
constants presented in Fig. 1 [20]. Note that the real and imagi-
nary parts of the dielectric constants of normal breast tissue are
almost constant in this range of frequency, which is not the case
for a malignant tumor. To speed-up the calculations, only the
change in the dielectric constant of malignant tumor is incor-
porated in the computer code, keeping the dielectric constant of
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Fig. 5. Copolarized backscatter RCS versus the normalized radius ka of the
spherical tumor only for: (a) " = 9:0� j1:2 and " = 50� j12 for breast
and tumor tissue, respectively, (b) with a variety of dielectric constants for breast
and tumor tissue. Normal incidence and H-polarization.

normal tissue at (see Fig. 1). This approximation
justifies computing and storing the impedance matrix associ-
ated with the breast only once, when the computer code
begins, leading to a substantial saving in computation time. In
Fig. 6, the backscatter RCS at normal incidence is plotted versus
the frequency from 1 to 10 GHz in steps of 100 MHz. The tumor
is modeled as a sphere of radius ranging from 1 to 6 mm, and
is located beneath the flat surface of Fig. 2(a) at cm and

cm, as shown in Fig. 6, respectively. As expected, the
results show that the spectrum of the tumor varies with the ra-
dius ; however, when the radius becomes 2 mm or less, a larger
frequency range will be needed. This indicates the difficulty in
detecting small tumors (less than 2 mm), since the surrounding
medium becomes more lossy at higher frequencies. Moreover,
upon comparing the results of Fig. 6(a) with those of 6(b), it is
clear that the depth of the tumor affects the magnitude of the
spectra rather than their locations.
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D. Incident and Scatter Directions and Polarizations

Example 5 investigates a variety of incident directions. The
3-D curved geometry depicted in Fig. 2(b) is used in this ex-
ample. In Fig. 7(a)–(c), the RCS of the spherical tumor only is
plotted as function of the parameter . In this example, the
depth of the tumor is , and the breast height is

[see Fig. 2(b)]. The copolarized RCS for the H-po-
larization at normal incidence are shown in Fig. 7(a).
The scattered waves are received in three directions: 1)
(backscatter direction); 2) , (forward di-
rection); and 3) , (backward direction).
The dielectric constants are assumed as and

for the normal breast tissue and the malignant
tumor, respectively. As expected, the scattered intensity in the
backscatter direction at normal incidence is larger than that in
the forward or in the backward directions, as shown in Fig. 7(a).

In Fig. 7(b)-(c), the copolarized scattered RCS at the oblique
incident direction , , are plotted for the H-
and V-polarizations, respectively. The results clearly show the
resonant scattering for both polarizations at all three scattering
directions ( , , , and ,

). Larger magnitudes were observed in the V-polariza-
tion case shown in Fig. 7(c). For the H-polarization, the magni-
tude at resonant frequencies (i.e., the maximum points) occurs
almost at the same locations for all three scattering directions, as
shown in Fig. 7(b). However, for the V-polarization case, some
of these locations are shifted upon changing the scattering direc-
tion as shown in Fig. 7(c). Interestingly, only in the backscatter
direction (i.e., , ), the maximum points occur at
the same locations for both the H- and V-polarization, as shown
in Fig. 7(b)-(c), respectively.

It is important to mention that the forward direction defined in
this paper indicates scattering in all directions above the air-in-
terface, where the receiving antenna is located (i.e., above the
breast surface). This definition is completely different from the
forward direction for scattering from a sphere immersed in free
space, which is exactly 180 from the incident direction as de-
scribed by Larsen et al. [3]. No resonance was observed in the
forward direction in the results presented by Larsen et al. [3],
which is not the case in the current work, as clearly demon-
strated in Fig. 7(a)–(c).

E. Total Scattered Intensity and Validation With the MoM

As discussed in Section II, the above resonance scattering is
obtained by calculating the electric and magnetic surface cur-
rents induced on the breast surface due to the presence of the
malignant tumor. However, the currents induced on the breast
surface due to the incident waves (i.e., from the transmitting an-
tenna) cannot be differentiated from those induced due to the
wave interactions with the tumor. In other words, the surface
current induced on the breast is the summation in complex vec-
tors of both currents as discussed in Section II.

Therefore, in Example 6, the total currents induced on the
breast surface are used to obtain the total scattering intensity.
These results are for the H-polarization at normal incidence with
the same dielectric constants and depth of Fig. 7. The results
clearly exhibit the resonance phenomenon compared with the
case where no tumor was present. In order to validate these re-
sults, a second multiple interaction between the tumor and the
breast surface (i.e., ) is taken into account, showing full
agreement with those produced using . In addition, the
MoM is used to validate both cases demonstrating good agree-
ment, with acceptable errors for larger . Note that Fig. 8
shows the maximum magnitude of the resonance as 0.35, while
Fig. 7(a) shows a maximum magnitude of 0.015. This drop in
the magnitude is due to using the same incident power to
normalize the RCS results in both cases.

F. Nonspherical Tumor

Example 7 investigates nonspherical malignant tumors. The
tumor is assumed to have a prolate spheroid shape. The curved
breast geometry depicted in Fig. 2(b) is used here. The dimen-
sions of the prolate spheroid are given by and with .
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Fig. 7. Copolarized RCS versus the normalized radius ka of the spherical malignant tumor only with " = 50� j12. It is located at d = +0:3� in normal
breast tissue (" = 9:0� j1:2) as depicted in Fig. 2(b) for (a) # = 0 H-polarization, (b) # = 45 , H-polarization, and (c) # = 45 , V-polarization.
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V-polarizations. The dielectric constants are assumed as
for the normal breast tissue and
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Fig. 9. Normalized average RCS versus the normalized radius ka of the prolate spheroid tumor only (" = 50� j12), in normal breast tissue (" = 9:0�
j1:2), where a = 2b for: (a) horizontally oriented prolate spheroid at depth d = +0:3� , (b) randomly oriented prolate spheroid at depth d = +0:25� , and
(c) the average of (a) and (b) with respect to the three incident directions.

for the malignant tumor. In this example, the original defini-
tion of the RCS of (2) is used, but integrates the scattered in-
tensity over the scattering directions in the plane of incidence,
i.e., at both (forward di-
rection) and (backward direction). The RCS is
normalized by the cross section area .

In this example, the average RCS with respect to polarization
(i.e., the H- and V-polarization) is plotted versus , as shown in
Fig.9 (a)–(c). In Fig. 9(a), the results are shown for the malignant
tumor only, which is horizontally oriented at depth
measured from its center. In this case, the Euler’s angles are

. On the other hand, in Fig. 9(b), the re-
sults are shown for the same tumor, but when it is randomly
oriented at . In this case, the Euler’s angles are

, , and . Interestingly, the results of
Fig. 9(a)–(b) shows that the resonance occurs almost at the same
values of regardless of the incident direction. However, com-
paring Fig.9 (a)–(b) shows that the magnitude of the resonance
spectra depends on both the incident angle and the orientation
of the tumor.

G. Averaging

The results in Fig. 9(a)–(b) suggest that taking the average
with respect to the incident directions can produce invariant
spectra of the malignant tumor regardless of its orientation, as
shown in Fig. 9(c). Notice that the two spectra shown in Fig. 9(c)
look very similar, except for the magnitude, which is due to
the difference in the depth [ in Fig. 9(a) versus in
Fig. 9(b)]. These results indicate that the spectra of the malig-
nant tumor are invariant with the incident polarization and the
incident and scattered directions. However, these spectra depend
on the physical characteristics of the tumor, i.e., the shape and
the electrical properties of its tissue. These conclusions agree
with the results reported in [29] in which lossless objects were
immersed in free space. Moreover, the results show that the
depth affects the scattering magnitude rather than the resonance
locations, as shown in Fig. 9(c). This observation also agrees
with the results reported in [39], where the natural resonant fre-
quencies of a mine, buried in dispersive layered half space, were
investigated versus its burial depth. Interestingly, the spectra of
the spherical tumor shown in Fig. 7 are different from those of
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the spheroid tumors shown in Fig. 9, which agrees with the con-
clusions reported in [29]. This observation can be explored to
distinguish malignant from benign tumors, as mentioned in [18].

In this paper, the malignant tumor was modeled by sym-
metric, smooth and compact objects such as spheres and prolate
spheroids. However, in reality, malignant tumors tend to have
irregular shapes. It is not possible to discretize these irregular
surfaces into the triangular patches needed for the MoM
without using a sophisticated discretization software, which is
not available at this point. It is necessary to resolve this issue
before using the presented approach to discriminate between
malignant and benign breast tumors, because their resonance
spectra are expected to be substantially different.

The current paper can be a guide in the selection of the fre-
quency range at which the tumor resonates, providing a max-
imum signature at the receiver. It is essential to also investigate
the effect of the skin thickness and breast inhomogeneities on the
resonance phenomenon. The skin layer is a strong scatterer at the
frequency range 1–10 GHz, therefore, it is important to include
it in the model. This issue will be investigated in a future work.

IV. CONCLUSION

This paper utilized the fast algorithm, MIM-SDFMM to in-
vestigate the resonance scattering of malignant breast cancer
tumors. The results indicate that the resonance scattering phe-
nomenon is invariant with the incident polarization, the incident
or scattered directions, and the depth of the tumor. The spectra
vary only with the shape and material of the tumor. This indi-
cates the resonance spectra to be a unique characteristic of the
tumor which can be explored to detect and discriminate between
malignant and benign breast tumors, as they differ drastically in
shape and material.
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