Novel nano-RFID sensor for the virus detection

Student: Yang Tian De Biological Materials & Devices Major Professor: I	gree: Ph.D., August 2024 Dr. Ryan Tian Graduate School & International Education Materials Science & Engineering Nanoscale Materials & Devices
 Background/Relevance The virus detection methods such as PCR and ELISA have built- in problems of being expensive, or labor-intensive, slow, user- unfriendly, and high false positive and false negative rates These methodologies cannot distinguish if viral RNAs and proteins are from live or dead viruses Innovation The ultrafast ion transport on a new nanocomposite affords a low-cost, wireless, sensitive virus RFID-sensor newly The new sensor is first time used on sensing living virus and verifying infection- or vaccination-induced antibodies' efficacy 	 Approach Optimize the nanocomposite morphologies and structure using new nanosynthesis routes Optimize the sensor using new coating methods Optimize the sensor set up Analyze the ultrahigh frequency sensing data Develop the new metabolomic virus-sensor concept based on the data Simulate the charge transport to help optimize the sensor design
<text><list-item><list-item></list-item></list-item></text>	 Summary The new nanocomposite has high ionic conductivity due to the special lattice- and surface-structures This virus-sensor is highly biocompatible and sensitive, ideal for identifying whether the virus is alive and infectious or not Future Work Dope different transition metals into the nanowire to boost the nanowire conductivity and in turn the sensors sensitivity Develop the handheld palm size wireless detector Turn the cell-culture wells to the array of in-situ, real-time, wireless monitors