Crystal Growth and Property Tuning of Topological Quantum materials

Student: Krishna Pandey Degree: Ph.D., December 2022

Background/Relevance

- Moore's law became challenging below 10nm due to emerging quantum effects.
- Topological quantum materials with exotic properties are promising for electronic, optoelectronic, and spintronic devices.

Innovation

- Observe the symmetry-protected electronic states of in Dirac nodal-line semimetal of ZrSiS-family.
- Tuning the exotic properties of the materials.

Key Results

- Successful growth of ZrXY ($\mathrm{X}=\mathrm{Si}, \mathrm{Ge} ; \mathrm{Y}=\mathrm{S}, \mathrm{Se} \mathrm{Te}$), LnSbTe ($\mathrm{Ln}=\mathrm{La}$, $\mathrm{Ce}, \mathrm{Gd}, \mathrm{Sm}, \mathrm{Pr}, \mathrm{Nd}$) single crystals using chemical vapor transport and flux method.
- Magnetization, Heat capacity measurement shows the AFM ground state with enhanced electronic correlation in NdSbTe and SmSbTe.
- Collaborative ARPES study shows the topological Dirac States in SmSbTe.

NdSbTe

Approach

- Grow single crystals using chemical vapor transport and flux methods.
- Structural and elemental characterization using x-ray diffraction (XRD) and energy dispersive spectroscopy (EDS).
- Characterize the electronic properties of

Schematic of CVT growth the topological Dirac fermions in single crystal.

- Tune the lattice and composition of the material; characterize the evolution of the Dirac states using resistivity, Hall effect, and quantum oscillation measurements.

Conclusions

- \quad Single crystals of Dirac nodal-line semimetal are synthesized by chemical vapor transport and flux method.
- SmSbTe, NdSbTe materials are antiferromagnetic and PrSbTe and LaSbTe does not have magnetic transition till 2 K .

Future Work

- Tune the properties of ZrXY and LnSbTe using magnetic field and strain.
- Characterize the evolution of the Dirac states using resistivity, Hall effect, and quantum oscillation measurements.
- Extend area of research to the other materials showing similar properties.

Office of Science

