Development of SiGeSn IR Detectors

Student: Justin M. Rudie

Degree: M.S., Dec. 2021

Background/Relevance

- Current infrared imaging sensors are expensive III-V materials
- Germanium based materials are well suited for IR detection, but material systems are relatively unexplored/characterized
- Characterization of band offsets is necessary for device modeling to advance this material system.

Innovation

- Novel CVD growth techniques to increase Sn in
- Previously unrealized compositions of SiGeSn will be grown and characterized
- Band offsets of SiGeSn/Gesn will be determined

Key Results

- Currently finding offsets of $\mathrm{Ge} / \mathrm{Si}$ and $\mathrm{Ge} / \mathrm{GaAs}$ to compare with literature to validate method
- Results are in the form: Reference value/My values/Difference

Si2p- Ge 3d	Ge 3d - VBM	Si 2p - VBM	As 3d - Ge 3d	Ge 3d - VBM	As 3d - VBM

70.09/70.06 29.69/29.3098.95/98.99 11.78/11.47 29.57/28.9/40.79/40.77	10.03	$/ 0.39$	$/-0.04$	$/ 0.31$	0.67	$/-0.02$

- $\quad \mathrm{Ge} / \mathrm{Si} \mathrm{VBO}=0.37 \mathrm{eV}$ compared to 0.83 eV in literature
- $\mathrm{Ge} / \mathrm{GaAs} \mathrm{VBO}=-0.4 \mathrm{eV}$ compared to 0.56 eV in literature

Approach

- CVD growth plans altering pressure, temperature, growth time and other parameters to achieve quality samples
- Confirmation of material content and quality via ellipsometry, PL, TEM imaging, etc.
- XPS of multiple samples to find core level binding energies leading to the determination of the valance band offset (VBO) of the heterojunction.
- Equation to determine VBO:
$\Delta E_{V}=\left(E_{a}^{(i)}-E_{b}^{(i)}\right)+\left(E_{C L}^{b}-E_{V B M}^{b}\right)-\left(E_{C L}^{a}-E_{V B M}^{a}\right)$
- Conduction band offset (CBO)can be determined from band gap data after VBO is known.

Conclusions

- So far method has not been able to recreate know offsets of $\mathrm{Ge} / \mathrm{Si}$ and $\mathrm{Ge} / \mathrm{GaAs}$ materials.
- \quad Native oxide present a serious obstacle for finding actual binding energies

Future Work

- Comprehensive sample prep method to ensure oxide free surface without crystal damage
- Proceed with measurements on $\mathrm{GeSn} / \mathrm{Ge}$ and $\mathrm{SiGeSn} / \mathrm{GeSn}$ samples.

