Electrical Transport Measurements of Graphene on CdPS₃

Student: Tony Dorhauer Nanoscale Materials & Devices Undergraduate School / Major	Graduate School & International Education Materials Science & Engineering r: Missouri State University / Physics; Applied Mathematics
 Background/Relevance Graphene is very thin, 2-Dimensional layer of graphite, organized in a hexagonal pattern on the atomic scale Graphene has great electrical, chemical, and thermal properties Graphene has very high electrical conductivity Innovation Try to understand how electrical properties affect sensing parameters 	 Approach Clean the chip, apply the resist (PMMA) Electron Beam Lithography (EBL) etches the design onto the chip Metal evaporation coat the design in gold Bond wires onto the wire contacts Flake transfer to put graphene onto the back gate Anneal the device and, if necessary, plasma etch as a final clean Finally, the device undergoes a Hall experiment at temperatures close to absolute zero in the cryostat
Key ResultsHexagonal Boron Nitride (hBN)• Carrier Density: $n = 2.518 * 10^{12} \text{ cm}^{-2}$ • Electron Mobility: $\mu = 286 \frac{cm^2}{Vs}$ Cadmium Phosphorus Sulfide (CdPS3)• Carrier Density: $n = 1.774 * 10^{13} \text{ cm}^{-2}$ • Electron Mobility: $\mu = 164 \frac{cm^2}{Vs}$ *discrepancy over mobility values due to inaccuracy of magnetic field value	 No conclusive evidence to support either substrate being better than the other Boron nitride had a greater mobility Cadmium phosphorus sulfide had a higher carrier density Further testing must be done

Research funded by National Science Foundation REU Grant # EEC-1922719 REU Site: Tomorrow's Nanomanufacturing: Engineering with Science (TNEWS).