Update on the variation of the downy mildew pathogen

International Spinach Conference
Yuma, AZ
February 24, 2015

Jim Correll and Steve Koike
Chunda Feng and Kat Kammeijer

University of Arkansas, Fayetteville, AR
University of California Cooperative Extension
Salinas, CA
Outline

- Biology of the downy mildew pathogen
- Race characterization
- New races documented
- Novel isolates - underway
- Susceptibility of R1 – R15 varieties
- Current status of races
- New Efforts
Working relationships

CLGRP: California Leafy Greens Research Program (2008)
Plantum NL: http://www.plantum.nl/english/articles.htm
NAKT: http://www.naktuinbouw.nl/engels/engels.html
Downy Mildew
Peronospora farinosa f. sp. spinaciae (Pfs) = *P. effusa*

- Global pathogen
- Obligate pathogen
- Spinach – only host
- Favored by cool-wet weather
- Tolerant of hot / dry
- Short latent period (6-8 days)
Disease cycle

Conidia dispersal
Wind rainsplash

Healthy

Germination
Cool - wet

Sporulation

Short latent period
6-8 days

Latent period

Germination and infection
Oospores?
Oospores - 2007
Spinach Downy mildew
Global pathogen

- Isolated villages in Nepal (>10,000 ft)
- Hot arid desert regions of Egypt
- Isolated virgin production areas in South Africa
Egypt 2013
How does the disease get started?

- Primary inoculum
- Wind blown asexual spores (short-lived)
 - “green bridge”
- Dormant sexual oospores (soil)
- Seed?
 - Demonstrated in Japan
 - Rare event
 - PCR test to ID on seed (2014)
Fresh Market Spinach in California

Harvested Acres vs. Total Value (x 1,000 USD)

- Red line: Harvested Acres
- Green line: Total Value

Data Source: USDA - NASS, 2011
Herd Immunity

- Flu / Influenza
- Measles
- Downy mildew
Heavy Mildew Pressure in CA and AZ in 2013-2014

Yuma / Imperial has had exceptionally high disease pressure

Many races, mixtures, and deviating strains
Heavy Mildew Pressure in Yuma/Imperial 2013-2014
Table 1. Disease reactions of spinach differentials for race identification of the spinach downy mildew pathogen *Peronospora farinosa* f. sp. *spinaciae*.

<table>
<thead>
<tr>
<th>Differential cultivar</th>
<th>Race(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Viroflay</td>
<td>+</td>
</tr>
<tr>
<td>Resistoflay</td>
<td>-</td>
</tr>
<tr>
<td>Califlay</td>
<td>-</td>
</tr>
<tr>
<td>Polka</td>
<td>-</td>
</tr>
<tr>
<td>Clermont</td>
<td>-</td>
</tr>
<tr>
<td>Campania</td>
<td>-</td>
</tr>
<tr>
<td>Dolphin</td>
<td>-</td>
</tr>
<tr>
<td>Avenger</td>
<td>-</td>
</tr>
<tr>
<td>Lion</td>
<td>-</td>
</tr>
<tr>
<td>Lazio</td>
<td>-</td>
</tr>
<tr>
<td>Whale</td>
<td>-</td>
</tr>
<tr>
<td>Pigeon</td>
<td>-</td>
</tr>
</tbody>
</table>
Disease management options

- Host resistance
 - Major (qualitative)
 - Minor (quantitative)

- Cultural
 - Crop Rotation
 - “Green Bridges”

- Chemical
 - Conventional: foliar and seed treatments
 - Organic, limited effective materials, coppers

- Biological - very limited efficacy
Six Hypothesized R Loci

- Each locus controls R to different races
- RPF1 has been characterized
- Others are being characterized
- Several “new” loci being used
Deviating isolate

<table>
<thead>
<tr>
<th></th>
<th>UA1014A PLP</th>
<th>1914E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>Caladonia</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Coati</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E03D.0579</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mandril</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Meerkat</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Platypus</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Plover</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PV1053</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Scorpins</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Woodpecker</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>SSR-SP-29</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C: cotyledons
T: True leaves
UA201502A has been tested once.
Race 1 -15 Resistance

- Several novel isolates
- New Resistances (x and y)
- Some newer resistance “leaky”?
- X and Y – temperature sensitive?
Managing Downy Mildew of Spinach: A Genomics-based Approach to the Host and Pathogen
Downy Mildew Project
USDA-NIFA-SCRI Funding

- ~ $1M
- Genetics of resistance
- Pathogen/race diversity
- Seed assays
- Outreach for Stakeholders
Downy Mildew Project
USDA/NFA 2013-2015

- Researchers
 - Jim Correll, U of Arkansas
 - Burt Bluhm, U of Arkansas
 - Chunda Feng, U of Arkansas
 - Kurt Lamour, U of Tennessee
 - Becky Lyon, U of Tennessee
 - Lindsey duToit, Washington State
 - Steve Koike, UCCE
 - Neil McRoberts, U. of California, Davis
In 2.5 years we, at University of Arkansas, will have answers to all the genetic questions regarding Spinach Mildew.

February 23, 2015

Signed: [Signatures]

Witnessed by: [Signatures]
Thank you...
Google “Spinach Portal” website – http://spinach.uark.edu/
Meeting updates
Financial Support
- CLGRB – Mary Zischke
- ASTA
- USDA/NIFA – SCRI Program
- U.S. and E. U. Seed Companies
- University of Arkansas Division of Agriculture
- UC Cooperative Extension

Field personnel (CA and AZ)
- Gowan Seed, Holaday Seed, Jay Schafer