Suppression of Fusarium Wilt in Spinach Seed Production Using Compost

International Spinach Conference
24–25 Feb. 2015, Yuma, AZ

Lindsey du Toit, Mike Derie, Barbara Holmes, & Caitlin Price Youngquist, WSU Mount Vernon NWREC
Spinach Seed Production in USA

- 'Coastal' PNW
- Cool/dry summer
- 800-1,000 mm rain annually
- Winter rainfall
- Acid soils
Spinach Fusarium Wilt

Fusarium oxysporum f. sp. spinaciae

8-15 year rotations between spinach seed crops in USA
Fusarium wilt of spinach

Fusarium oxysporum f. sp. spinaciae
Management of spinach Fusarium wilt

1. Long crop rotation: 8-15+ years
2. Partial resistance: Choice for contracted seed crops? Knowledge of susceptibility of parent lines?
3. Soil amendments:
 a. Biofumigant cover crops
 b. Agricultural limestone: increase pH, rates, # of applications
4. N-fertilizer: ammonium (11-52-0 = acidic) vs. nitrate vs. urea
5. Soil bioassay: Fusarium wilt risk assessment for field selection
6. Fungicides: Seed (thiophanate-methyl), foliar (prothioconazole)
7. Mechanisms of Fusarium wilt suppression by limestone
Spinach Fusarium Wilt
2006 Spinach seed crop limestone field trial

![Graph showing seed yield (lb/acre) vs. rate of limestone amendment (tons/acre). The graph compares seed yield for susceptible and moderate female spinach varieties. The graph shows that at 2.1 tons/acre, there is an increase in seed yield for both varieties, with the susceptible variety showing an even greater increase at 3.5 and 4.2 tons/acre.]

- Susceptible female
- Moderate female

Legend
- Blue line: Susceptible female
- Black triangle: Moderate female
Spinach Fusarium wilt: 2009-2012 trial (PhD student, Emily Gatch)

Seed yield (lb/A)

Limestone rate (t/A)

- Susceptible
- Moderate
- Resistant

2009

2012

Lime rate (t/A)

0-0-0-2
Soil bioassay for Fusarium wilt risk prediction
Soil bioassay for spinach Fusarium wilt
(vs. real-time PCR soil assay: Okubara et al. 2013. Plant Dis. 97:927-937)
Risk assessment: Spinach Fusarium wilt soil bioassay

A. 2009–10 bioassay

B. 2010–11 bioassay

Field (soil) sample

- Partially resistant line
- Moderately-susceptible line
- Susceptible line
Risk prediction: Multiple regression analyses

Susceptible inbred:
\[
Y = -0.4556 - 0.0172(\text{rotation}) + 0.0854(\text{NH}_4^+ - \text{N}) - 0.3875(\text{soil pH}) + 0.4037(\text{buffer pH}) + 0.0056(\text{sand}) + 0.0245(\text{clay})
\]
\(R^2 = 0.3396 \text{ at } P<0.0001\)

Moderate inbred:
\[
Y = 1.0777 - 0.0136(\text{rotation}) + 0.0005(\text{V. dahliae}) + 0.0563(\text{NH}_4^+ - \text{N}) - 0.1528(\text{soil pH}) + 0.0045(\text{clay})
\]
\(R^2 = 0.3213 \text{ at } P<0.0001\)

Resistant inbred:
\[
Y = 0.6161 - 0.0094(\text{rotation}) + 0.0498(\text{NH}_4^+ - \text{N}) + 0.0003(\text{K}) - 0.0947(\text{soil pH})
\]
\(R^2 = 0.2415 \text{ at } P<0.0001\)

- pH, buffer pH
- N - NO\textsubscript{3} & NH\textsubscript{4}
- P
- K
- Ca
- Mg
- S
- B
- Fe
- Mn
- Zn
- Cu
- CEC
- OM
- EC
- Rotation
- % sand, silt, clay
- *F. oxysporum*
- *V. dahliae*
Effect of Proline on spinach wilt: 2012 field trial
du Toit et al. 2014. Plant Disease Management Reports 8:V280

Severity of wilt (0 - 5 scale)

- **Susceptible**
 - Proline: *5.1%
 - No Proline: *8.2%

- **Moderate**
 - Proline: 3.0%
 - No Proline: 2.8%

- **Resistant**
 - Proline: 2.5%
 - No Proline: 1.9%

Seed yield (lb/acre)

- **Susceptible**
 - Proline: *18.4%
 - No Proline: 11.4%

- **Moderate**
 - Proline: 10.0%
 - No Proline: 9.8%

- **Resistant**
 - Proline: 6.9%

* = significant difference between Proline vs. control plots (P < 0.05)
Compost suppression of Fusarium wilt
2013 Proline & compost spinach trial
Wilt incidence (7/02) & severity (7/24)

Significantly fewer wilted plants & less severe wilt in compost plots vs. control plots or Proline plots ($P<0.05$)
2013 Proline & compost spinach trial
Spinach biomass (7/09) & marketable seed yield

Significantly larger plants & greater marketable seed yield in compost plots vs. control plots and Proline plots.
Plant nutrient analyses (7/09/13)

Compost significantly increased:
K (by 15%)
Mg (6%)
S (8%)
Zn (13%)
Cu (15%)

Secondary root formation

Soil analyses

Compost significantly increased:
5/20 (3 weeks after planting)
NO$_3$ (231%), Na (33%), S (56%), Zn (48%),
EC (192%), salts (192%)
8/15 (~seed harvest)
NO$_3$ (25%), K (23%), Na (5%), CEC (30%)
2014 Compost spinach trial
Wilt severity (7/18) & marketable seed yield

Severity of wilt (0 – 5) on 7/18

- Susceptible: Control - 2%, Topsin - 5%, T+Proline - 10%, T+P+Compost - 10%
- Moderate: Control - 4%, Topsin - 14%, T+Proline - 15%, T+P+Compost - 2%
- Resistant: Control - 3%, Topsin - 2%, T+Proline - 2%, T+P+Compost - 2%

Marketable seed yield (g/140 plants)

- Susceptible: Control - 8%, Topsin - 22%, T+Proline - 126%, T+P+Compost - 11%
- Moderate: Control - 13%, Topsin - 8%, T+Proline - 13%, T+P+Compost - 5%
- Resistant: Control - 2%, Topsin - 5%, T+Proline - 10%, T+P+Compost - 3%
Summary of 2013 & 2014 Spinach Trials

- Compost can enhance spinach seed production
 - Improved spinach stand by 11-15% in 2013 (not in 2014)
 - Reduced wilt incidence/severity in both years
 - Increased spinach biomass & marketable seed yield
 - Economic viability? Supply? Other composts?
- Proline also suppressed Fusarium wilt & increased seed yield
Acknowledgements

Puget Sound Seed Growers' Association
Washington State Commission for Pesticide Registration
Alfred Christianson Endowment, Robert MacDonald Fund, USDA Western Region IPM, SARE

Town of La Conner, Sakata, Seminis

Growers:
Brad Smith,
Todd Gordon, Gail Thulen,
Roger Jungquist

WSU:
Ron Dralle, Dan Gorton,
Alec Solemslie,
Eric Christianson,
Sean Mullahy