Nutrient and Water Use of Fresh Market Spinach

Richard Smith, Michael Cahn and Tim Hartz
UC Cooperative Extension, Monterey County and UC Davis, Dept of Plant Sciences

Tricia Love, Barry Farrara, Laura Murphy, Tom Lockhart, Elizabeth Mosqueda and Fabian Galvan
Spinach Production Challenges

- Eighty-inch wide beds present a particular challenge for managing nitrogen and water.
- Densely planted with 24 - 32 seedlines across the wide bed top using 2 to 4 million seed per acre.
- It is fast maturing, shallow rooted and exclusively sprinkler irrigated.
- These characteristics create difficulties for achieving high N-use efficiency.
- Growers are under pressure to meet strict quality standards and comply with water quality regulations.
Nitrogen Uptake of Spinach

Most active uptake 15-30 days

6.0 lbs N/A/day
Nitrogen Uptake by Spinach by Product Type

- Baby
- Teenage
- Bunch

Lbs N/A
Spinach Nitrogen Uptake and Application Rates

- **Total N applied (lbs N/A)**: 175 lbs N/A
- **Biomass N (lbs N/A)**: 93 lbs N/A

175 lbs N/A applied
93 lbs N/A uptake
Effect of Residual Soil Nitrate on Spinach Yield

Initial Soil Nitrate-N = 5.8 ppm

Initial Soil Nitrate-N = 28.0 ppm
Phosphorus and Potassium Uptake

<table>
<thead>
<tr>
<th>Crop</th>
<th>Percent P at harvest</th>
<th>P uptake lbs/A</th>
<th>Percent K at harvest</th>
<th>K uptake lbs/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinach</td>
<td>0.7</td>
<td>15.0</td>
<td>9.3</td>
<td>203</td>
</tr>
</tbody>
</table>
In the first 15 days of the crop cycle, the roots only reached to 10 inches.
Rooting Depth of Spinach

88% of all roots found in top 12” of soil at harvest

![Bar chart showing rooting depth of spinach across different soil depth intervals. The chart indicates that the majority of roots are found in the top 12” of soil.](chart)
Nitrate Distribution in Spinach Beds After Harvest

Most Active Roots

Zone of efficient crop N removal

Nitrate leached past root zone

NO₃-N (mg/kg soil)
Spinach Water Use Survey

<table>
<thead>
<tr>
<th>Applied water inches</th>
<th>Crop ET inches</th>
<th>Applied water/ETc</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>3.1</td>
<td>245</td>
</tr>
</tbody>
</table>

Growers need to avoid water patterns in fields and to keep the crop growing fast with high quality and this drives water applications.
Improving Nitrogen Use Efficiency

• Water management is key to keeping nitrate in the shallow rootzone

• The use of nitrogen fertilizer technology is another idea that has potential
 ▪ Controlled release fertilizers can protect nitrate in the coated prill from leaching losses
 ▪ Nitrification inhibitors can reduce nitrate movement by keeping N as ammonium
Materials Tested

• Controlled release materials:
 ▪ Coated Urea – Duration
 ▪ Triazone - NSure

• Nitrification inhibitors:
 ▪ Nitrapyrin - Instinct
 ▪ DMPP - Novatec
 ▪ DCD – Super U
Shallow root system and high water use makes it difficult to keep a high percent of soil nitrate in the area of active roots.
Nitrification inhibitor: Keeps ammonium from converting to nitrate for a brief period of time.
Controlled Release: Urea encapsulated in a plastic prill

4-12 inches area of active root system
2013 Trial

* Material sprayed over spread ammonium sulfate and then mulched into bed
Yield of Romaine
Drip Applied UN32 with Fertilizer Additives
Spence, 2014

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (lbs N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>0</td>
</tr>
<tr>
<td>Standard</td>
<td>155</td>
</tr>
<tr>
<td>Moderate</td>
<td>105</td>
</tr>
<tr>
<td>Nitrapyrin</td>
<td>105</td>
</tr>
<tr>
<td>NSURE</td>
<td>105</td>
</tr>
<tr>
<td>Novatec</td>
<td>105 lbs N</td>
</tr>
</tbody>
</table>
Spinach to Be Added to CropManage

CropManage web based decision support Program to assist water and N management

- Irrigation management decisions based on crop ET
- Nitrogen management decisions based on soil residual nitrate and crop demand
Acknowledgements

California Leafy Greens Research Board

CDFA Fertilizer Research and Education Program