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INTRODUCTION

Asyou leave work each day, how do you choose a route home? Prominent dual-system ac-
counts posit two distinct cognitive systems that solve this task in different ways (Balleine &
O’Doherty, 2009; Dickinson, 1985; Fudenberg & Levine, 2006; Kahneman, 1973; Slo-
man, 1996). On the one hand, you could decide your route home by relying on habit.
Since you have successtully taken one particular route to your house many times, this route
has been ingrained into your motor system and can be executed quickly and automatically.
Habits are useful because they make often-repeated behavior efficient and automatized;
however, they are also inflexible and therefore more likely to produce errors. For example,
consider the case where your significant other asked you to buy some toilet paper on your
way back home. In this case, it would be better to suppress the habitual route and engage in
goal-directed control. This involves the recall of the alternate goal (picking up toilet paper),
and planning a new route that goes past the convenience store, using an internal model
(“cognitive map”) of the environment. Goal-directed planning is useful because it is
more flexible and consequently more accurate than relying on habit. However, it also
carries significant computational costs (Gershman & Daw, 2012).

These two systems are typically theorized as competitors, vying for control of behavior.
A major goal of modern decision research is understanding how control is allocated be-
tween the two systems. We will attempt to summarize and extend this line of research.

Yet, the two systems may also interact cooperatively. For example, you might learn a
habit to check traffic reports before you leave work because this facilitates planning an
optimal route. Moreover, the act of “checking” could involve elements of goal-
directed planning—for instance, searching for radio stations—even if initiated out of
habit. These illustrate just two forms of cooperation: habitual actions can support effec-
tive goal pursuit and even drive the selection of goals themselves.

Until recently, the computational principles underlying the competition and coop-
eration between habitual and goal-directed systems were poorly understood. Armed
with a new set of sequential decision tasks, researchers are now able to track habitual
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and goal-directed influences on behavior across an experimental session (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Doll, Duncan, Simon, Shohamy, & Daw, 2015;
Keramati, Smittenaar, Dolan, & Dayan, 2016; Kool, Cushman, & Gershman, 2016).
This work has spurred new computational approaches to multisystem reinforcement
learning (RL) and control architectures.

In this chapter, we review recent work on both competition and cooperation. First,
we will provide a short, nontechnical exposition of the computational framework under-
lying this research (see Gershman, 2017 for a technical review). Next, we will discuss
recent work that suggests how competition between habit and planning can be under-
stood as a cost—benefit trade-off. Finally, we describe several studies that detail how
the complementary strengths of habitual and goal-directed systems can be combined
cooperatively to achieve both efficiency and accuracy.

MODEL-FREE AND MODEL-BASED CONTROL IN REINFORCEMENT
LEARNING

The core problem in RL is estimating the value (expected discounted return) of state—
action pairs in order to guide action selection. Broadly speaking, there are two strategies
for solving this problem: a model-free strategy that estimates values incrementally from
experience and a model-based strategy that learns a world model (reward and transition
functions), which can then be used to plan an optimal policy. A central tenet of modern
RL theory posits that the model-free strategy is implemented by the habitual system and
the model-based strategy is implemented by the goal-directed system (Daw, Niv, &
Dayan, 2005; Dolan & Dayan, 2013).

Roughly speaking, the model-free strategy is a form of Thorndike’s law of eftect,
which states that actions that led to a reward become more likely to be repeated
(Thorndike, 1911). This strategy is referred to as “model-free” because it does not
rely on an internal model of the environment. Instead, values are stored in a cached
format (a look-up table or function approximator), which allows them to be quickly
retrieved. These values can be updated incrementally using simple error-driven learning
rules like the temporal difference learning algorithm (Sutton & Barto, 1998). The main
downside of the model-free strategy is its inflexibility: when a change in the environ-
ment or task occurs, the entire set of cached values needs to be relearned through
experience. This inflexibility, ingrained by repetition, is what makes the model-free
strategy habitual. In summary, the model-free strategy achieves efficiency of learning
and control at the expense of flexibility in the face of change.

The model-based strategy, by contrast, represents its knowledge in the form of an in-
ternal model that can be modified locally when changes occur (e.g., if a particular route is
blocked, only that part of the model is modified). These local changes can then induce
global effects on the value function, which is computed on the fly using planning or dy-
namic programming algorithms. Thus, the model-based strategy, unlike the model-free
strategy, need not cache values. As a consequence, the model-based strategy can flexibly
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modify its policy in pursuit of a goal without relearning the entire model. This flexibility
is only available at a computational cost; however, since model-based algorithms are
inevitably more time- and resource-intensive than querying a look-up table of cached
values or function approximator (Daw et al., 2005; Keramati, Dezfouli, & Piray, 2011).

PRINCIPLES OF COMPETITION
Distinguishing habit from planning in humans

Along line of research in psychology and neuroscience has sought empirical evidence for
the distinction between these model-free and model-based RL systems. Early studies
tended to focus on animal models, and this literature has been reviewed extensively else-
where (Dolan & Dayan, 2013; Gershman, 2017), so we will not cover it here. Instead, we
focus on more recent studies with human subjects. We will describe how one particular
experimental paradigm, a sequential decision task, which we will refer to as the “Daw
two-step task” (Daw et al., 2011), has been pivotal in revealing the competition between
model-free and model-based control in humans. We then turn to our main topic of in-
terest in this section: Given that the systems can compete for control, how is this compe-
tition arbitrated?

Many recent studies of model-free and model-based control in humans have used
the Daw two-step (Daw et al., 2011), summarized in Fig. 7.1 (following Decker,
Otto, Daw, & Hartley, 2016, the depicted version of this task features a space travel

2 T

Chance to win reward (changing slowly)

Figure 7.1 Design and state transition structure of Daw two-step task (Daw et al,, 2011; Decker et al.,
2016). Each first-stage choice has a high probability (70%) of transitioning to one of two second-stage
states and a low probability of transitioning to the other. Each second-stage choice is associated with
a probability of obtaining a binary reward (between 0.25 and 0.75) that slowly changes across the
duration of the experiment according to a Gaussian random walk with ¢ = 0.025.
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cover story to make it more engaging for participants). The key appeal of this task is that
it can be used to quantitatively distinguish the influence of model-free and model-based
control on choices (see Akam, Costa, & Dayan, 2015). Each trial of the Daw two-step
task starts with a choice between two stimuli (spaceships), which lead probabilistically to
one of two second-stage states (planets). At these second-stage states, the participant
then makes a second choice between two stimuli (aliens) that both offer a chance of
obtaining a monetary reward (space treasure). The reward probabilities for these
second-stage stimuli change slowly and independently throughout the task in order
to encourage continuous learning. The most important feature of the Daw two-step
task is its transition structure from the first-stage stimuli to the second-stage states.
Specifically, each first-stage option leads to one of the second-stage states with a high
probability (a “common” transition), whereas on a minority of the trials they lead to
the other state (a “rare” transition).

Through these low-probability transitions between actions and rewards, the Daw
two-step task can behaviorally distinguish between model-free and model-based choice.
Because the model-free strategy does not have access to the task structure, it will increase
the probability of taking the previous action if it led to reward, regardless of whether this
was obtained through a common or a rare transition. Therefore, choice dictated by a
purely model-free agent looks like a main effect of reward, with increased probability
of repeating the previous action after a reward and with no effect of the previous tran-
sition (Fig. 7.2A). The model-based strategy, on the other hand, computes the first-
stage action values through planning, using the transition structure to compute the
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Figure 7.2 Probability of repeating the first-stage choice for three agents. (A) For model-free agents,
the probability of repeating the previous choice is dependent only on whether a reward was obtained
and not on transition structure. (B) Model-based behavior is reflected in an interaction between pre-
vious transition and outcome, increasing the probability of transitioning to the state where the reward
was obtained. (C) Behavioral performance on this task reflects features of both model-based and
model-free decision-making, the main effect of previous reward and its interaction with the previous
transition. (Reprinted from Kool et al. (2016).)
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expected value at the second stage for either action. Therefore, this system will reduce the
likelihood of repeating the first-stage action after a reward obtained through a rare tran-
sition, since the other first-stage action has a higher likelihood to lead to the previously
rewarded second-stage state. This behavior is reflected as a crossover interaction between
the previous transition type and previous reward on the probability of staying: after rare
transitions, wins predict a switch and losses predict a stay (Fig. 7.2B).

Interestingly, behavioral performance on the Daw two-step task reflects a mixture of
these strategies (Fig. 7.2C). The probability of repeating the previous actions shows both
the model-free main effect of previous reward and the model-based crossover interaction
between previous transition type and previous reward. The relative influence of the
model-based and model-free systems on this task can be estimated by fitting a reinforce-
ment learning model to participants’ behavior. Here, both strategies compute first-stage
action values, which are then combined according to a weight parameter that determines
the relative balance between model-free and model-based control.

The relative balance between model-based and model-free control indexed by this
task has been linked to a broad range of other cognitive, neural, and clinical phenomena.
For example, Decker et al. (2016) showed that children show virtually no signs of model-
based control and that our ability for model-based planning develops through adoles-
cence into adulthood (see Chapter 13 by Hartley). Gillan, Kosinski, Whelan, Phelps,
and Daw (2016) have reported that the degree of model-based control in this task posi-
tively predicts psychiatric symptoms related to compulsive behavior (see Chapter 15 by
de Wit and Chapter 17 by Morris), and others have shown that it also negatively predicts
personality traits such as alcohol dependence (Sebold et al., 2014; see Chapter 16 by Cor-
bit) and extraversion (Skatova, Chan, & Daw, 2015).

In addition to these findings that bolster the applicability of the two-step task to the
broader field of psychology, it can also account for important phenomena in the RL liter-
ature, such as the finding that overtraining of an action—reward association induces
insensitivity to subsequent outcome devaluation (a hallmark feature of habitual control;
Gillan, Otto, Phelps, & Daw, 2015).

Arbitration between habit and planning as a cost—benefit trade-off

The finding that people show a balance between model-based and model-free control on
the Daw two-step task raises the question of whether and how people decide, from
moment to moment, which strategy to use. Although there are several theoretical pro-
posals on this topic (Boureau, Sokol-Hessner, & Daw, 2015; Gershman, Horvitz, &
Tenenbaum, 2015; Griftiths, Lieder, & Goodman, 2015; Keramati et al., 2011; Pezzulo,
Rigoli, & Chersi, 2013), it has received surprisingly little empirical focus (but see Daw
et al., 2005; Lee, Shimojo, & O’Doherty, 2014).

Several experimental manipulations have been discovered to alter the balance be-
tween model-free and model-based control, and these provide key clues about the
form and function of arbitration between RL systems. As we review, many of these
implicate some form of executive function or working memory in model-based control.
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In one such case (Otto, Gershman, Markman, & Daw, 2013), participants performed the
Daw two-step task while they were sometimes required to perform a numerical Stroop
task that taxed their working memory and therefore reduced the amount of available
cognitive resources. At the start of those trials, participants kept two numbers of different
value and physical size in working memory. After the reward outcome of the two-step
trial was presented, participants were then prompted to indicate on what side of the
screen the number with larger size or value had appeared. Interestingly, on trials with
this “load” condition, subjects showed a strong reliance on the model-free strategy
and virtually no influence of a model-based strategy (Otto, Gershman, et al., 2013).
This study suggests that the exertion of model-based control relies, at least in part, on ex-
ecutive functioning or cognitive control. This set of cognitive processes, which are
dependent on computations in the frontal cortex, allow us to reconfigure information
processing in order to execute novel and effortful tasks (Miller & Cohen, 2001).

Another clue for the involvement of executive functioning in model-based planning
comes from a study by Smittenaar, FitzGerald, Romei, Wright, and Dolan (2013). In this
experiment, participants performed the Daw two-step task while activity in their right
dorsolateral prefrontal cortex (dIPFC), a region that is critical for the functioning of
cognitive control, was sometimes disrupted using transcranial magnetic stimulation.
Interestingly, performance on the task showed increased reliance on habitual control dur-
ing those trials, indicating a crucial role for the dIPFC and executive functioning in
model-based planning (see also Glascher, Daw, Dayan, & O’Doherty, 2010; Lee et al.,
2014).

Several other reports have yielded consistent evidence, in the form of robust correla-
tions between individual differences in the degree of model-based control used in the
Daw two-step task and measures of cognitive control ability. For example, Otto,
Skatova, Madlon-Kay, and Daw (2015) showed that people with reduced performance
in a response conflict task (such as the Stroop task; Stroop, 1935) also showed reduced
employment of model-based control. In another study, participants with increased work-
ing memory capacity showed a reduced shift toward model-free control under stress
(Otto, Raio, Chiang, Phelps, & Daw, 2013). In addition, Schad et al. (2014) showed
that measures of general intelligence predicted reliance on model-based control. Their
participants completed both the Daw two-step task and also the trail-making task
(Army Individual Test Battery, 1944), in which participants use a pencil to connect
numbers and letters, randomly distributed on a sheet of paper, in ascending order, while
also alternating between numbers and letters (i.e., 1-A-2-B-3-C, etc.). Interestingly, in-
dividuals with increased processing speed on this task, indicating increased ability for
cognitive control in the form of task switching, also showed a greater reliance on
model-based control in the Daw two-step task.

We now address the question of whether, and how, the brain arbitrates between
model-based and model-free control. One potential metacontrol strategy would simply
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be to always use the more accurate model-based system when the necessary cognitive re-
sources are available and only use the habitual system when they are occupied or other-
wise inoperative. Note that, although this would lead to increased average accuracy, such
a model does not describe how its resources should be allocated when they could be
devoted to multiple tasks. In other words, this model does not predict how people allo-
cate control resources when the available tasks together demand more resources than
available.

When aiming to describe such a trade-oft; it would be sensible for a model to be sen-
sitive to the elevated computational costs that are associated with model-based control,
since those cognitive resources could be applied to other rewarding tasks. Consequently,
we propose that allocation of control is based on the costs and benefits associated with
each system in a given task. In this case, model-based control would be deployed
when it generates enough of a reward advantage over model-free control to offset its
costs.

Consistent with this possibility, recent experimental evidence suggests that demands
for cognitive control register as intrinsically costly (Kool, McGuire, Rosen, & Botvinick,
2010; Schouppe, Ridderinkhof, Verguts, & Notebaert, 2014; Westbrook, Kester, &
Braver, 2013). For example, in the demand selection task (Kool et al., 2010), participants
freely choose between task options that require different amounts of cognitive control
and subsequently show a strong bias toward the lines of action with the smallest control
demands. The intrinsic cost account predicts, in addition, that this avoidance bias should
be offset by incentives. Indeed, several studies provide evidence for this hypothesis by
showing increased willingness to perform demanding tasks when appropriately rewarded
(Westbrook et al., 2013), even if this commits them to increased time toward goal attain-
ment (Kool et al., 2010).

Based on these, and other, findings (for a review, see Botvinick & Braver, 2015),
recent accounts of executive functioning propose that the exertion of cognitive control
can best be understood as a form of cost—benefit decision-making. For example,
Shenhav, Botvinick, and Cohen (2013) have proposed that the brain computes an
“expected value of control” for each action—the expected rewarded discounted by
the cost of associated control demands—and then chooses the action with highest value.
Other researchers have proposed similar accounts (Gershman et al., 2015; Griffiths et al.,
2015), whereby metacontrol between different systems is determined by the “value
of computation,” the expected reward for a given action subtracted by the costs of
computation and time.

An older, but related, account was developed by Payne, Bettman, and Johnson (1988;

El

1993), who proposed that humans are “adaptive decision-makers,” choosing among
strategies by balancing accuracy against cognitive effort. Finally, a recent model from
Kurzban, Duckworth, Kable, and Myers (2013) addresses the cost—benefit trade-oft

from a slightly different angle. They argue that the cost of effort, and therefore the
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subsequent implementation of control for a certain action, is dependent on the opportu-
nity costs of the alternatively available actions. This model predicts that subjective
experiences of effort, and subsequent reductions in control, depend on the value of
the next-best line of action. In summary, even though these proposals differ in terms
of how costs influence decision-making, they all center on the idea that the mobilization
of control can best be understood as a form of cost—benefit trade-off.

Below we sketch our own recent efforts to combine these insights from RL theory in
general—and the Daw two-step task, in particular—with the emerging view of cognitive
control as value-based decision-making. We then review several other related approaches
in the contemporary literature.

Control—reward trade-off in the two-step task

We propose that arbitration between model-based and model-free control is achieved by
integrating the costs and benefits of each system. The rewards obtained by each system
can be calculated by observing the average returns obtained by each control system, inde-
pendently, and conditioned on the present task. Next, the brain uses these resulting
“controller values” to select actions that maximize future cumulative reward. In doing
s0, it imposes an intrinsic, subject “cost” on the model-based controller. This cost rep-
resents the foregone reward due to model-based control, for instance due to the poten-
tially longer decision time and due to the foregone opportunity to deploy limited
cognitive control resources on other, concurrent tasks.

A core prediction of this model is that manipulating the rewards available during a
decision-making task should alter the balance between model-free and model-based
control. A natural candidate task to test this prediction is the Daw two-step task. Indeed,
the model-based strategy in this task has been described as “optimal” (e.g., Sebold et al.,
2014). Thus, one would predict that the more money at stake on any given trial of the
task, the more willing the participant should be to pay the intrinsic cost of cognitive con-
trol in order to obtain the benefits of accurate performance.

In practice, however, recent research on this task shows that increased reliance on the
model-based system does not predict increased performance accuracy on the Daw two-
step task (Akam et al., 2015; Kool et al., 2016). To show this, Kool et al. (2016) recorded
the average reward rate of many RL agents that varied across a range from pure model-
free control to pure model-based control (see Fig. 7.3A). These simulations showed no
systematic relationship between reward rate and model-based control for the original
Daw two-step task, or for several related variants of this task (Dezfouli & Balleine,
2013; Doll et al., 2015) across a wide range of RL parameters. Consistent with this simu-
lation result, they also found no correlation between model-based control and average
reward in a subsequent experiment (Fig. 7.3B). The absence of this relation is produced
by the interaction of at least five factors, several of which appear to prevent the model-
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Figure 7.3 Control—reward trade-off in the Daw two-step task. (A) The relationship between the de-
gree of model-based control and reward rate across 1000 simulations (with reinforcement learning
parameters mirroring the median fits reported by Daw et al. (2011)). Importantly, these simulation re-
sults show that the task does not embody a trade-off between model-based control and reward. (B)
Relationship between the estimated degree of model-based control and reward rate in the Daw two-
step task (Daw et al.,, 2011). Consistent with simulation results, there is no correlation between these
variables (n = 197). Dashed lines indicate the 95% confidence interval. (Adapted from Kool et al. (2016).)

based system from obtaining sufficiently reliable reward estimates (Kool et al., 2016). In
short, the effectiveness of the model-based strategy is weakened on the Daw two-step
task, because the first-stage choices carry relatively decreased importance and because
this strategy does not have access to accurate representations of the second-stage reward
outcomes. The fact that there is no control—reward trade-oft in the Daw two-step task
makes it ill-suited to test the cost—benefit hypothesis of RL arbitration, for example, by
testing the effect of increased “stakes” on controller selection.

A novel two-step paradigm

In order to gain more experimental and computational traction on a control—reward
trade-off in RL, Kool et al. (2016) developed a novel two-step task that theoretically
and empirically achieves a trade-oft between control and reward. The changes in this
new task are based on the factors that were identified to produce the absence of this rela-
tionship in the Daw two-step task. One of the more notable changes to this paradigm is
that it adopts a different task structure (Fig. 7.4; Doll et al., 2015). This task uses two first-
stage states (randomly selected at the start of each trial) that both offer deterministic
choices to one of two second-stage states. In both these second-stage states, the choices
again are associated with a reward outcome that randomly changes across the experi-
mental session. Specifically, the drifting reward probabilities at the second stage are
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Opportunity to obtain reward (changing over time)

Figure 7.4 Design and state transition structure of the novel two-step task. Each first-stage choice
deterministically transitions to one of two second-stage states. Each second-stage choice is associated
with a scalar reward (between 0 and 9), which changes over the duration of the experiment according
to a random Gaussian walk with o = 2.

replaced with drifting scalar rewards (ranging from a negative to a positive number), so
that the payoff of each action is identical to its value. This change was implemented to
increase the informativeness of each reward outcome and thus to increase model-based
accuracy.

The dissociation between model-free and model-based control in this task follows a
different logic than the Daw two-step task. Since the model-free system only learns
state—action—reward outcomes, it will not be able to transfer information learned in
one starting state to the other starting state. In other words, rewards that are obtained
in one starting state only increase the likelihood of revisiting that second-stage when
the next trial starts in the same starting state but should not affect subsequent choices
from the other starting state. The model-based system, on the other hand, treats the
two starting states as functionally equivalent because it realizes the implicit equivalence
of their action outcomes. Therefore, it will be able to generalize knowledge across
them. So, reward outcomes at the second-stage should equally affect first-stage choices
in the next trial, independent of whether this trial starts with the same state as the previous
one.

This novel version of the two-step task incorporates many changes that increase the
importance of the first-stage state and the ability of the system to learn the second-stage
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action values. Because of this, it achieves a trade-off between control and reward. This
was first demonstrated through the simulation of RL agents performing this novel task
(Kool et al., 2016). These simulations showed that the degree of model-based control
was positively associated with average reward rate on the novel two-step paradigm
(see Fig. 7.5A). A subsequent experiment provided convergent evidence for this theoret-
ical result. Kool et al. (2016) found that, across participants, the degree of model-based
control positively predicted the average reward rate (Fig. 7.5B), and this correlation
was significantly stronger than that in the Daw two-step task.

Interestingly, Kool et al. (2016) also observed that participants spontaneously
increased their rates of model-based control on the novel two-step task compared to
the Daw two-step task. This suggests that the existence of the control—demand trade-
off in the novel paradigm may have triggered a shift toward model-based control.
Note that this result is consistent with the cost—benefit hypothesis of arbitration between
habit and planning. However, alternative explanations are possible. For example, it may
be the case that the introduction of negative reward in the novel paradigm triggered a
shift toward model-based control, due to loss aversion. Such a shift would be the result
of a decision heuristic signaling that certain features of the task should lead to increased
model-based control, regardless of whether it actually yield larger overall reward than
model-free control.

(A) Simulations (B)
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1 2
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Figure 7.5 Control—reward trade-off in the novel two-step task. (A) The relationship between the de-
gree of model-based control and reward rate across 1000 simulations. In contrast with the Daw two-
step task, these simulation results show that the novel two-step task successfully achieves a trade-off
between model-based control and reward. (B) Relationship between the estimated degree of model-
based control and reward rate in the novel two-step task. Consistent with simulation results, there was
a strong correlation between these variables (n = 184). Dashed lines indicate the 95% confidence in-
terval. ¥***P < .001. (Adapted from Kool et al. (2016).)
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Testing the cost—benefit model of arbitration

To distinguish between these two accounts, Kool, Gershman, and Cushman (2017)
adapted the novel two-step paradigm so that the size of potential reward (the “stakes”)
changes randomly from trial to trial. In this new task, participants are cued about the
size of the stakes at the outset of each trial. The size of the stakes is randomly selected
on each trial, with high stakes calculated as a quintupling of baseline rewards. If behavior
on this task is determined by a cost—benefit analysis, then people should employ more
model-based control in the face of increased incentives, since on those trials the cost—
benefit trade-off would be most beneficial. The results from this experiment were consis-
tent with this hypothesis. Participants showed increased reliance on model-based control
on high-stakes trials, indicating an increased willingness to engage in effortful planning
(Kool et al., 2017).

Even though this result is consistent with the trade-off hypothesis, it is also consistent
with an account that does not rely on the flexible and adaptive integration of costs and
benefits. Specifically, participants may have simply acted on a decision heuristic, which
reflexively increases model-based control in high-stake situations, regardless of whether
this provides a reward advantage. To test this possibility, Kool et al. (2017) also imple-
mented the stakes manipulation in the Daw two-step paradigm, since in this task there
exists no trade-oft between control and reward. If the stakes effect is driven by an incen-
tive heuristic, high stakes should trigger increased model-based control in both tasks.
However, under a cost—benefit account, where the brain estimates task-specific
controller values for both systems, model-based control should not increase on high-
stakes trials in the stakes version of the Daw two-step task. The results supported the latter
hypothesis. Participants who completed the original Daw two-step task were insensitive
to reward amplification through the stakes manipulation, in contrast with the increase in
model-based control to reward amplification in the novel paradigm (Kool et al., 2017).

These results provide the first evidence that the brain attaches a cost to the exertion of
model-based control. Furthermore, they provide insight into the way humans arbitrate
between control mechanisms. Rather than relying on a heuristic of increasing model-
based control when presented with larger incentives or other task features, participants
seemed to engage in an adaptive integration of costs and benefits for either strategy in
the current environment. Participants flexibly estimated the expected rewards for each
system and then weighed this against the increased costs of model-based control.

Alternative models of arbitration

The cost—benefit account of competition between RL systems is broadly consistent with
two bodies of research. First, the assumption that model-based control carries an intrinsic
effort cost finds resonance in a large literature on the aversive nature of cognitive control
(Botvinick & Braver, 2015; Gershman et al., 2015; Griftiths et al., 2015; Payne et al,,
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1993; Rieskamp & Otto, 2006; Shenhav et al., 2013). This work suggests that the exer-
tion of cognitive control can best be understood as the output of cost—benefit analysis.
The comparison of behavior between the novel and Daw two-step tasks described above
indicates that a similar trade-oft guides the allocation of model-based control, presumably
because this also requires the exertion of cognitive control (Otto, Gershman, et al., 2013;
Smittenaar et al., 2013).

Second, there are now several other models of arbitration between competing RL
system that are, to varying degrees, compatible with the cost—benefit trade-off account,
but which differ in their details (Daw et al., 2005; Keramati et al., 2011; Lee et al., 2014;
Pezzulo et al., 2013). Below, we will describe how these models implement the compe-
tition between model-free and model-based control and contrast them with our cost—
benefit account.

According to Daw et al. (2005), arbitration between conflicting systems for behavioral
control is primarily determined on the basis of uncertainty. Specifically, this model esti-
mates each system’s value uncertainty for each state—action pair. The model-based sys-
tem has uncertainty due to bounded computational resources, whereas the model-free
system has uncertainty due to limited experience in the environment. These measures
of uncertainty are computed through Bayesian implementations of both RL systems as
the posterior variance of the action values. After estimating these two different forms
of uncertainty, the competition is then resolved by choosing the action value of the sys-
tem with lower uncertainty.

A related metacontrol model uses signals of the systems’ reliability as a means of arbi-
tration (Lee et al., 2014). Here, the measure of reliability for a system is proportional to
the absolute size of their prediction errors, the degree to which the systems predicted
future states or rewards accurately. Similar to the Daw et al. (2005) model, Bayesian esti-
mation of reliability still occurs for the model-based system, while a Pearce—Hall
associability-like rule is used to estimate the reliability of the model-free system. In addi-
tion, this model also incorporates a “model bias” term, which favors the model-free sys-
tem all else being equal, so as to account for differences in cognitive effort. The resulting
arbitration process transforms these variables into a weighting parameter, which is then
used to compute a weighted combination of action values to guide decision-making.
Note that, in contrast to the Daw et al. (2005) model, the competition is resolved as a
function of the average reliability of the model-based and model-free systems, and not
separately for each action.

These closely related models of metacontrol account for many experimental findings,
such as the finding that as the model-free system becomes more accurate, agents become
increasingly insensitive toward outcome devaluation (since the model-free system needs
to incrementally relearn its action—outcome contingencies). Furthermore, the reliability
signals in the Lee et al. (2014) model have been shown to have a neural correlate in the
inferior lateral prefrontal cortex. They cannot, however, explain the observation of
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increased model-based control on high-stakes trials (Kool et al., 2017), since the accuracy
of either system’s prediction does not change as a result of the amplification of reward.
Therefore, these models do not predict an increase in proactive model-based control
in the face of increased reward potential.

Instead, our cost—benefit hypothesis and the data described above align more strongly
with metacontrol models that balance accuracy against control costs. One such model is pro-
posed by Keramati et al. (2011). According to this account, the choice between model-
based and model-free control is essentially about maximizing total reward. At each time
point, the decision-maker estimates the expected gain in reward from running a model-
based estimation of action values. This measure, also known as the value of information
(Howard, 1966), was originally developed as a way to negotiate the exploration—
exploitation trade-oft in RL. Next, the agent also estimates the cost of running those
simulations. This cost is explicitly formalized as the amount of potential reward that the
model-free system could have accrued while the model-based system is engaged in these
prospective simulations. In other words, the cost of model-based control is explicitly an op-
portunity cost directly proportional to the required processing time. Finally, the costs and
gains are compared against each other, and their relative size determines whether the
model-based system is invoked. If the costs outweigh the gains, the faster the habitual sys-
tem is employed, otherwise the agent engages in slower model-based planning.

Pezzulo et al. (2013) have developed a related value-based account of arbitration be-
tween habit and planning. Similar to the proposal of Keramati et al. (2011), the agent as-
sesses each available action in the current state by first computing the value of information
(Howard, 1966) associated with model-based planning. This variable encompasses both the
uncertainty about the action’s value and also the difference in value between each action
and the best available alternative action. The value of information increases when the un-
certainty about the current action is high and also if the difference between possible action
values is small (that s, if the decision is more difficult). Next, this measure of the expected
gains of model-based control is compared against a fixed threshold that represents the effort
cost (Gershman & Daw, 2012) or time cost associated with planning. Again, if the cost ex-
ceeds the value of information, the agent relies on cached values; otherwise it will employ
model-based simulations over an internal representation of the environment to reduce the
uncertainty about the current action values (Solway & Botvinick, 2012).

Both the Keramati et al. (2011) and Pezzulo et al. (2013) models account for a range of’
behavioral findings. The time-based account of Keramati et al. (2011) model accounts for
the increasing insensitivity to outcome devaluation over periods of training. It can also
naturally incorporate the finding that response times increase with the number of options,
especially early in training, since at those moments the model will engage in time-
consuming model-based simulations across the decision tree. Relatedly, Pezzulo et al.
(2013) showed that, in a multistage RL task, their model switches from a large number
of model-based simulations in earlier stages toward more reliance on model-free control
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in later stages. In other words, when the model-free system has generated a sufficiently ac-
curate representation of the world, the agent then prefers to avoid the cost of model-based
control. The Pezzulo et al. (2013) model is also able to flexibly shift between systems. For
example, it shows a rebalancing toward model-based control in response to a change in
reward structure of the environment, i.e., an increase in uncertainty of action outcomes.

However, these models still arbitrate between habit and planning as a function of the
amount of uncertainty about value estimates in the model-free action values: both
models assume an advantage for model-based control when uncertainty about model-
free estimates is high (Keramati et al., 2011; Pezzulo et al., 2013). In doing so, they
are not immediately able to explain the effect of increased stakes on model-based control
(Kool et al., 2017). Those data instead favor a mechanism that directly contrasts the re-
wards obtained by model-based and model-free control, discounted by their respective
cost. Furthermore, the fact that these models require the explicit computation of the ex-
pected gains from model-based simulations (the value of information; Howard, 1966)
creates the problem of infinite regress (Boureau et al., 2015). If the purpose of metacon-
trol is to avoid unnecessary deployment of cognitive control, then this purpose is under-
mined by engaging in an explicit and demanding computation to determine whether
cognitive demands are worthwhile.

Based on the evidence described here, we make two suggestions for new formal
models of arbitration between RL systems. First, they should incorporate a direct contrast
between the costs and benefits of both model-free and model-based learning strategies in
their current environment, perhaps in addition to a drive to increase reliability of
controller predictions. This property should afford flexible adaptive control in response
to the changing potential for reward, such as in the stake size experiment described
above. Second, in order to avoid the issue of infinite regress, the arbitration between
habit and planning should be guided by a process that does not involve control-
demanding computations of reward advantage, such as the value of information
(Howard, 1966). Instead, new models of metacontrol should focus on more heuristic
forms of arbitration. Notably, a system that attaches an intrinsic cost to model-based plan-
ning might guide metacontrol with enhanced efficiency, by circumventing the need for
an explicit computation of those costs in terms of effort, missed opportunities, and time.
In sum, these properties motivate our proposal that a form of model-free RL integrates
the reward history and control costs associated with different control mechanisms. The
resulting “controller values” dictate controller arbitration.

PRINCIPLES OF COOPERATION

While the evidence reviewed in the previous section supports competitive architectures,
recent evidence also suggests a variety of cooperative interactions between model-free
and model-based RL. In this section, we review three difterent flavors of cooperation.
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Model-based simulation as a source of training data for model-free
learning

One way to think about the trade-off between model-free and model-based algorithms is
in terms of sample complexity and time complexity. Sample complexity refers to the number
of training examples a learning algorithm needs to achieve some level of accuracy. Time
complexity refers to how long an algorithm takes to execute. Intuitively, these corre-
spond to “learning time” and “decision time.”

Model-free algorithms have high sample complexity but low time complexity—in
other words, learning is slow but deciding is fast. Model-based algorithms have the oppo-
site property: relatively low sample complexity, assuming that the model can be learned
efficiently, but high time complexity. Since the amount of data that an agent has access to
is typically fixed (by the world or by the experimenter) and thus beyond algorithmic
improvement, it might seem that this trade-oft is inevitable. However, it is possible to
create additional examples simply by simulating from the model and allowing model-
free algorithms to learn from these simulated examples. In this way, the model-based sys-
tem can manufacture an arbitrarily large number of examples. As a consequence, the
model-free system’s sample complexity is no longer tied to its real experience in the
world; model-based simulations, provided they are accurate, are a perfectly good
substitute.

Sutton (1990) proposed a cooperative architecture called Dyna that exploits this idea.
A model-free agent, by imbibing model-based simulations, can become arbitrarily pro-
ficient without increasing either sample complexity or time complexity. The only
requirement is that the agent has sufficient spare time to process these simulations.
Humans and many other animals have long periods of sleep or quiet wakefulness during
which such simulation could plausibly occur. Notably, neurons in the hippocampus
tuned to spatial location (“place cells”) replay sequences of firing patterns during rest
and sleep (see, Carr, Jadhav, & Frank, 2011 for a review), suggesting they might act as
a neural substrate for a Dyna-like simulator (Johnson & Redish, 2005). Furthermore,
it is well known that motor skills can improve following a rest period without additional
training (Korman, Raz, Flash, & Karni, 2003; Walker, Brakefield, Morgan, Hobson, &
Stickgold, 2002) and reactivating memories during sleep can enhance subsequent task
performance (Oudiette & Paller, 2013). Ludvig, Mirian, Kehoe, and Sutton (2017)
have argued that simulation may underlie a number of animal learning phenomena
(e.g., spontaneous recovery, latent inhibition) that are vexing for classical learning the-
ories (which are essentially variants of model-free algorithms).

A series of experiments reported by Gershman, Markman, and Otto (2014) attempted
to more directly test Dyna as a theory of human RL. The experimental design is summa-
rized in Fig. 7.6A. In Phase 1, subjects learn the structure of a simple two-step sequential
decision problem. In Phase 2, they learn that taking action A in state 1 is superior to
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Figure 7.6 (A) The sequential decision problem consists of three states (indicated by numbered circles)
and two mutually exclusive actions in each state (indicated by letters). Deterministic transitions be-
tween states conditional upon the chosen action are indicated by arrows. Rewards for each state—
action pair are indicated by amounts (in cents). In Phase 4, reward feedback is delayed until the
end of the phase. (B) Revaluation in load and no load conditions. Revaluation magnitude is measured
as P,(action = B|state = 1)—P,(action = B|state = 1), where P,(action = a|state = s) is the probability
of choosing action a in state s during Phase i. Top: load applied during Phase 3; Bottom: load applied
during Phase 4. (C) A brief rest phase prior to Phase 4 ameliorates the effects of load.

taking action B. They then learn in Phase 3 that state 3 is superior to state 2. This sets up a
conflict with what they learned in Phase 2 because taking the preferred action A in state 1
will lead them to state 2 (the inferior state). In Phase 4, Gershman et al. (2014) tested
whether they switch their preference for action A following their experience in the
second-step states.

Standard model-free learning algorithms like temporal difference learning do not pre-
dict any revaluation because they rely on unbroken trajectories through the state space in
order to chain together reward predictions. These trajectories were deliberately broken in
the experimental structure so as to handicap model-free learning. Less obviously, standard
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model-based learning algorithms also predict no revaluation because subjects are explic-
itly instructed in Phase 4 that they are only being rewarded for their actions in the first
state. Thus, the optimal model-based policy should completely ignore information about
the second step. Crucially, Dyna predicts a positive revaluation effect because model-
based simulation can effectively stitch together the state sequences, which were not
explicitly presented to subjects, allowing model-free algorithms to revise the value esti-
mate in state 1 following experience in states 2 and 3.

The experimental results showed clear evidence for a revaluation effect (Fig. 7.6B),
supporting the predictions of Dyna. Additional support came from several other findings.
First, cognitive load during Phase 3 reduced the revaluation eftect. This is consistent with
the idea that model-based simulation, like other model-based processes, is computation-
ally intensive and thus susceptible to disruption by competition for resources. Second, the
load eftect could be mitigated by increasing the number of trials (i.e., opportunities for
revaluation) during Phase 3. Third, a brief rest (quiet wakefulness) prior to Phase 4
increased revaluation, consistent with the hypothesis of offline simulation driving
model-free learning (Fig. 7.6C). Finally, applying cognitive load during Phase 4 had
no effects on the results, supporting our proposal that performance is driven by
model-free control (recall that cognitive load has a selective, deleterious eftect on
model-based control; Otto, Gershman, et al., 2013).

Taken together, these results provide some of the first behavioral evidence for
cooperative interaction between model-based and model-free RL. The same frame-
work may explain the observation that model-based control on the Daw two-step
task becomes resistant to disruption by cognitive load over the course of training
(Economides, Kurth-Nelson, Lubbert, Guitart-Masip, & Dolan, 2015). If one effect
of training is to inject model-based knowledge into the model-free value function,
then the model-free system will be able to exhibit model-based behavior autono-
mously. Dyna may also shed light on the recent observation that dopamine neurons
signal prediction errors based on inferred (i.e., simulated) values (Doll & Daw, 2016;
Sadacca, Jones, & Schoenbaum, 2016).

Partial evaluation

Keramati et al. (2016) have investigated an alternative way to combine model-based and
model-free systems, which they refer to as “planning-until-habit,” a strategy closely
related to “partial evaluation” in the computer science literature (see Daw & Dayan,
2014). The basic idea, illustrated in Fig. 7.7, 1s to do limited-depth model-based planning
and then insert cached model-free values at the leaves of the decision tree. The sum of
these two components will equal the full value at the root node. This model nests
pure model-based (infinite depth) and pure model-free (depth 0) algorithms as special
cases. The primary computational virtue of partial evaluation is that it can efficiently
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Figure 7.7 (A) Pure planning: rewards are mentally accumulated over an infinite horizon. (B) Plan-
until-habit: rewards are partially accumulated and then combined with a cached value function.
(C) Pure habit: actions are evaluated using only cached values, no reward accumulation. (Reprinted
from Keramati et al. (2016).)

exploit cached values to augment model-based planning. This will work well when
cached values are accurate in some states but not others (where planning is required).

Keramati et al. (2016) provided behavioral evidence for this proposal using a novel
three-step extension of the Daw two-step task. Using the same logic of analyzing the
interaction between reward outcome and transition probability on subsequent choices,
they found differences in the mixture of model-based and model-free behavior at
different steps of the task. In particular, subjects appeared model-based with respect to
the second step but model-free with respect to the third step, precisely what was pre-
dicted by the partial evaluation strategy. Moreover, putting people under time pressure
shifted them to a pure model-free strategy at both steps, consistent with the idea that the
depth of model-based planning is adaptive and depends on resource availability.

Habitual goal selection

An advantage of model-based control is its capacity to plan toward goals. That is, a
model-based agent can specify any particular state of the world that she wishes to attain
(e.g., being at the dentist’s office at 2 p.m. with a bottle of ibuprofen) and then evaluate
candidate policies against their likelihood of attaining that goal state. In many laboratory
tasks, the number of possible goal states may be very small, or they may be explicitly
stated by the experimenter. For instance, in the classic “two-step” task presented in
Fig. 7.1, there are only six states toward which the agent might plan (two intermediate
states and four terminal states). In the real world, however, the number of possible goal
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states that we might select at any given moment is very large. Usually, there are no ex-
perimenters restricting this set for you. How do we decide which goals to pursue?

One possibility is exhaustive search, but this is computationally prohibitive. Consider,
for instance, evaluating candidate goals alphabetically: You could set the goal of abscond-
ing with an aardvark, or absconding with an abacus, and so on, until eventually considering
selecting the goal of X-raying with a Xerox. For the same reason—i.e., the large set of
possible goals in most real-world settings—it is not practical to employ model-based eval-
uation of the rewards of candidate goals in order to decide which goal to select. Is there a
more efficient way to decide which particular goal to pursue from moment to moment?

An obvious alternative is to select goals by model-free methods—in other words, to
store a state-specific cached value of the likely value of pursuing different goals. Put simply,
an agent might ask himself/herself, “when I’ve been in this situation in the past, what have
been rewarding goals for me to select?”” Of course, once a goal is selected, it falls to model-
based processes to plan toward that goal. This entails a cooperative relationship between
the two control mechanisms: Cached, model-free values may be used to decide which
goal to pursue, while model-based planning is used in order to determine how to attain it.

The utility of this approach is best appreciated through a specific example (Cushman
& Morris, 2015). Consider an experienced journalist who sets out to report on different
news events each day. At a high level of abstraction, his/her job is structured around a
regular series of goals to pursue: “Find out what has happened this morning”; “Consult
with my editor”; “Obtain interviews”; “Write a draft,” and so forth. Thus, selecting goals
may be efficiently accomplished by considering their cached value: “Obtaining inter-
views” was a valuable goal yesterday, and it will remain so today. Yet, pursuing any
one of these goals would require flexible model-based planning—for instance, the ac-
tions necessary to interview the president one day will be different than the actions neces-
sary to interview a political dissident the next day. In sum, then, a favorable architecture
for many tasks would select goals according to model-free value but then attains goals by
model-based planning.

Cushman and Morris (2015) found empirical support for this architecture using
several modified versions of the classic Daw two-step task. An example is illustrated in
Fig. 7.8. The essence of the design is to prompt people to choose an action that reveals
their goal but then occasionally transition them to a nongoal state. If this reinforcement
history aftects their subsequent choice despite its low probability, then it can be attributed
to a model-free value update process. Subsequently, participants are tested on different
actions that are associated with common goal states. Influence of reinforcement history
even upon these different actions implies a model-free value assignment not to the action
itself, but rather to the goal state with which it is associated.

Beyond the particular case of goal selection, this research points toward a more gen-
eral form of cooperative interaction between model-free and model-based systems. For
typical real-world problems, full model-based evaluation of all possible action sequences
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Figure 7.8 A modified version of the two-step task designed to test a model of habitual goal selec-
tion. (A) At stage 1, participants are presented with two available actions drawn from a set of four (1, 2,
3, and 4). These transitions are with high probability to either a blue or red intermediate state, and
with equal low probability to a green state. (B) On critical trials, the low-probability green-state tran-
sition occurs. The key question is whether the reward obtained following the green state influences
subsequent choice of different actions that share the same goal (e.g., whether a reward following the
sequence 1, green influences the probability of subsequently choosing action 3, which shares the
blue-state goal with action 1). Across several experiments, participants exhibited precisely this effect.
(Reprinted from Cushman and Morris (2015).)

will always pose prohibitive computational demands. One solution to this problem is to
use cached, model-free values to weight the probability with which all possible actions
are introduced into the subset of actions that receive further model-based evaluation.
(This subset might be described as the “choice set.”) All else being equal, the higher
the cached value of an action, the more likely that the benefits of a more precise
model-based estimate of its current value will outweigh the computational demands
involved. Investigating this general process of “choice set construction” is an important
direction for future research.

CONCLUSION

Opver the last century, the idea that human behavior is controlled by two systems, one
habitual and one goal-directed, has become a cornerstone of psychological and behav-
1oral theories of cognition and decision-making (Dickinson, 1985; Dolan & Dayan,
2013; Fudenberg & Levine, 2006; Kahneman, 1973; Sloman, 1996). Recent RL theory
has brought mathematical precision to this area of research by formalizing this distinction
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in terms of model-based and model-free control (Daw et al., 2005, 2011; Glascher et al.,
2010). We have reviewed the surge of empirical and theoretical research emanating from
this formalism.

First, we reviewed work that addresses how the habitual and goal-directed systems are
engaged in a competition for control of behavior. We proposed that this competition is
arbitrated as a trade-oft between the costs and benefits of employing each system. At the
core of this proposal is the idea that the exertion of model-based control carries an
intrinsic effort cost associated with the exertion of cognitive control. This account is sup-
ported by the findings that model-based planning is dependent on cognitive resources
(Otto, Gershman, et al., 2013; Otto, Raio, et al., 2013; Otto et al., 2015; Schad et al.,
2014) and that humans attach intrinsic disutility to the exertion of cognitive control
(Kool et al., 2010; Westbrook et al., 2013). Current research indicates that model-
based control is spontaneously increased in response to reward amplification, but only
when the model-based system is associated with increased accuracy (Kool et al., 2016,
2017). Together, these findings suggest that the brain estimates values for each system,
integrating their costs and benefits into a single metacontrol value that it uses to guide
controller arbitration.

Second, we reviewed a new line of research that focuses on the ways in which habit and
planning act in a cooperative fashion to achieve both efficiency and accuracy. Evidence
suggests a plethora of cooperative strategies: the model-free system can learn from data
simulated from the model-based system (Gershman et al.,, 2014), can truncate model-
based planning (Keramati et al., 2016), or can facilitate the selection of rewarding goals
(Cushman & Morris, 2015). At present, it is unclear whether these different strategies
occur simultaneously or are adaptively invoked much like in the controller arbitration
problem.

In the work described here, the idea of an intrinsic effort cost for model-based control
has only come to the fore in the research on the competitive interaction between habit
and planning. However, given the ubiquitous nature of the cost for cognitive control
(Botvinick & Braver, 2015; Westbrook & Braver, 2015), such a cost is likely to also
play a role in the collaborative interactions between these two systems. From this
perspective, several intriguing questions arise.

Some of these questions concern the basic algorithmic approach that the brain takes to
decision-making. For instance, is habitual goal selection (Cushman & Morris, 2015) more
prevalent for people who attach a higher intrinsic cost to model-based planning? Does
the intrinsic cost of cognitive control establish the threshold at which estimation of action
values switches from planning to habit in the situations described by Keramati et al.
(2016)? In light of our cost—benefit theory of controller arbitration, one may view the
cooperative interaction between habit and planning as a case of bounded rationality
(Gigerenzer & Goldstein, 1996). From this perspective, costly cognitive resources would
be deployed to maximize accuracy among a restricted region of the action space while
preserving a net gain in value, and habit would provide complementary assistance for
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those actions not analyzed through model-based control. Note that this framework pre-
dicts that increased potential incentives (as used in Kool et al., 2017) will lead to deeper
planning in the Keramati et al. (2016) task and a reduced reliance on habitual goal selec-
tion in the Cushman and Morris (2015) task.

Other questions involve neural implementation. Ever since the recent resurgence of
RL theory in modern psychological research, the neuromodulator dopamine has come to
the fore as playing a key role. Most famously, Schultz, Dayan, and Montague (1997)
showed that reward prediction errors, the signals that drive learning of action—outcome
contingencies, are encoded by the phasic firing of dopamine neurons that project to the
ventral striatum in the basal ganglia. More important for the current purpose, it has been
suggested that tonic levels of dopamine encode an average reward signal that determines
response vigor in operant conditioning tasks (Hamid et al., 2016; Niv, Daw, & Dayan,
20006), so higher dopamine levels yield increased responding on free-operant condition-
ing tasks. Based on these and related results, Salamone and colleagues (Salamone &
Correa, 2012; Salamone, Correa, Farrar, Nunes, & Pardo, 2009) have proposed that
baseline levels of dopamine in the basal ganglia may actually serve to discount the
perceived costs of physical effort. For example, rats in an effort-based decision-making
task show reduced willingness to climb over barriers to obtain rewards after depletion
of dopamine in the nucleus accumbens (Cousins, Atherton, Turner, & Salamone,
1996). Westbrook and Braver (2016) have proposed a very similar view for the case of
mental effort. According to this account, increases in baseline dopamine levels in response
to high-reward situations facilitate subsequent cognitive processing by enhancing stability
of working memory representations in the prefrontal cortex. Intriguingly, recent exper-
iments indicate that baseline dopamine levels in the ventral striatum correlated positively
with a bias toward more model-based control (Deserno et al., 2015) and that experimen-
tally induced increases in dopamine increase the degree of model-based control in the
Daw two-step task (Sharp, Foerde, Daw, & Shohamy, 2015; Wunderlich, Smittenaar,
& Dolan, 2012; see Chapter 11 by Sharpe and Schoenbaum). Together, these insights
hint at the intriguing possibility that this effect of dopamine on model-based control
may be viewed as the result of an alteration of the variables that enter the cost—benefit
trade-off at the algorithmic level.

While the work we have reviewed in this chapter suggests a rich space of competition
and cooperation between RL systems, we have in fact only skimmed the surface. New
research suggests separate but interacting systems for Pavlovian (Dayan & Berridge, 2014)
and episodic (Gershman & Daw, 2017) RL. One may reasonably worry that theorists are
gleefully manufacturing theories to accommodate each new piece of data, without
addressing how the systems act in concert as part of a larger cognitive architecture.
What is needed is a theory of metacontrol that encompasses all of these systems. The
development of such a theory will be a central project for the next generation of RL
research.
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