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Schedule of Presentations 
 
All times below are U.S. West Coast/Pacific Daylight Time (PDT) using 24-hour format. Talks 
are 15 minutes, with 5 minutes for brief questions directly afterwards. We have also reserved 30 
minutes for discussions after each group of presentations, during which we will have Zoom 
breakout rooms for each speaker to meet with colleagues; the main Zoom session will remain 
open during that time for general discussion. All registered participants will receive Zoom URLs 
and related information prior to the start of the meeting. 
 

City Start Time End Time 
(Monday) 

End Time 
(Tue/Thu) 

End Time 
(Wednesday) 

Seattle 5:00 9:35 9:00 9:30 
New York 8:00 12:35 12:00 12:30 
Montevideo 9:00 13:35 13:00 13:30 
London 13:00 17:35 17:00 17:30 
Tokyo 21:00 1:35 1:00 1:30 

 
Monday 

Time 
(PDT) 

Paper 
# 

Author(s) Title 

5:00 Welcome 
5:05 20 Tomasz M. Rutkowski, Masato S. Abe, Seiki 

Tokunaga, Tomasz Komendzinski and Mihoko 
Otake-Matsuura 

Classifying Mild Cognitive 
Impairment from EEG 
Patterns for Dementia Onset 
Prediction 

5:25 28 Michael DePass, Ali Falaki, Stephan Quessy, 
Numa Dancause and Ignasi Cos 

A Mesoscopic 
Characterization of Sequential 
Movement related Neuro-
motor States in Premotor and 
Motor Cortices: A Machine 
Learning Approach 

5:45 34 Qinyue Zheng, Sihao Liu, Alessandro Villa and 
Alessandra Lintas 

Brain activity associated with 
personality traits and 
behavioral strategies revealed 
by unsupervised analysis of 
EEG Signal 

6:05 Discussion in breakout rooms 
6:35 6 Viacheslav Osaulenko and Danylo Ulianych Model of cell assemblies 

formation with iterative 
winners-take-all computation 
and excitation–inhibition 
balance 



6:55 12 Rimjhim Tomar and Lubomir Kostal Instantaneous Firing Rate 
Dispersion Can Decrease With 
Increasing Inter-spike Interval 
Variability 

7:15 18 Irene Tubikanec, Massimiliano Tamborrino, 
Petr Lansky and Evelyn Buckwar 

Qualitative properties of 
numerical methods for the 
inhomogeneous geometric 
Brownian motion 

7:35 Discussion in breakout rooms 
8:05 21 Charles Smith Origins and consequences of 

serial dependence in 
vestibular neural models 

8:25 1 Cesar Ceballos, Rodrigo Pena and Antonio 
Roque 

Impact of the activation rate 
of the Ih current influences 
the neuronal membrane time 
constant and synaptic 
potential duration 

8:45 19 Helena Bordini de Lucas, Steven L. Bressler, 
Fernanda Selingardi Matias and Osvaldo 
Anibal Rosso 

Using causal information 
theory to characterize cortical 
signals during a Go/No-Go 
task 

9:05 Discussion in breakout rooms 
9:35 end   

 
Tuesday 

Time 
(PDT) 

Paper 
# 

Author(s) Title 

5:00 11 Akari Matsuki, Ryota Kobayashi and 
Hiroshi Kori 

Bias in the estimation of coupling 
strength between oscillators 

5:20 32 Takeshi Abe, Yoshiyuki Asai and 
Alessandro E.P. Villa 

Phase coupling in interaction 
networks of neural mass models 
of cortical columns 

5:40 10 Arun Neru Balachandar, Alexander 
Khibnik, Joël Tabak and Roman Borisyuk 

Duration of the synaptic 
influence determines phase 
difference between 
asymmetrically coupled 
oscillators 

6:00 Discussion in breakout rooms 
6:30 31 Isabella Silkis Mechanisms of functioning of 

connectomes each of which 
includes the neocortex, 
hippocampus, basal ganglia, 
cerebellum, and thalamus 



6:50 13 Angel Caputi, Alejo Rodiguez-Cattáneo, 
Ana-Carolina Pereira and Pedro Aguilera 

Image processing in a cerebellum 
like structure 

7:10 24 Robin Gutzen, Sonja Grün and Michael 
Denker 

Eigenangles: evaluating the 
statistical similarity of neural 
network simulations via 
eigenvector angles 

7:30 Discussion in breakout rooms 
8:00 7 Snigdha Singh, Natalie Gonzales and 

Michael Stiber 
Refining connections in 
developing neural networks 

8:20 27 Lawrence Ward and Priscilla Greenwood Building stochastic dynamical 
neural circuits 

8:40 Discussion in breakout rooms 
9:00 end   

 
Wednesday 

Time 
(PDT) 

Paper 
# 

Author(s) Title 

5:00 23 Tsai-Rong Chang, Dominik Sorek, Petr 
Marsalek and Tzai-Wen Chiu 

Strong energy component is 
more important than spectral 
selectivity in modeling responses 
of midbrain auditory neurons to 
wide-band environmental sounds 

5:20 25 George Hadjiantonis, Guido Bugmann and 
Chris Christodoulou 

Characterization of inputs from 
filtered intracellular recordings 

5:40 22 Alessandra Stella, Peter Bouss, Günther 
Palm, Alexa Riehle, Sonja Grün and 
Thomas Brochier 

Significant Spatio-Temporal Spike 
Patterns in Macaque Monkey 
Motor Cortex 

6:00 Discussion in breakout rooms 
6:30 26 Jacob Kanev, Achilleas Koutsou, Chris 

Christodoulou and Klaus Obermayer 
The Difference Neuron: A 
versatile abstract spiking neuron 
model 

6:50 33 Alessandra Lintas, Raudel Sánchez-
Campusano, Agnes Gruart, José María 
Delgado-García and Alessandro E.P. Villa 

Dynamics of brain activity in 
multisite recordings from 
behaving parvalbumin deficient 
mice (PVKO) 

7:10 8 Mauricio Girardi-Schappo, Emilio F. 
Galera, Tawan T. A. Carvalho, Ludmila 
Brochini, Nilton L. Kamiji, Antonio C. 
Roque and Osame Kinouchi 

Asynchronous irregular activity 
coexists with power-law 
distributed neuronal avalanches 

7:30 Discussion in breakout rooms 
8:00 29 Irina Sinakevitch and Wulfila Gronenberg Olfactory neuropil in 

Amblypygids 



8:20 15 Tomas Barta and Lubomir Kostal Inhibitory noise decreases 
membrane potential fluctuations 
and may lead to increased firing 
regularity 

8:40 35 Henrik Ekström and Tatyana Turova A non-monotone bootstrap 
percolation model of neuronal 
activity 

9:00 Discussion in breakout rooms 
9:30 end   

 
Thursday 

Time 
(PDT) 

Paper 
# 

Author(s) Title 

5:00 14 Ryota Kobayashi, Daisuke Endo and 
Shigeru Shinomoto 

Estimating synaptic 
connectivity from parallel spike 
trains 

5:20 17 Makoto Ozawa, Yasuyuki Suzuki and 
Taishin Nomura 

Gaze-evoked nystagmus with 
centripetal drifts and 
centrifugal microsaccades 
during gaze fixation and its 
minimal neuromechanical 
model 

5:40 3 Olha Shchur and Alexander Vidybida Firing statistics of a neuron 
with delayed feedback 
inhibition stimulated with a 
renewal point process 

6:00 Discussion in breakout rooms 
6:30 5 Massimiliano Tamborrino and Petr Lansky Shot noise, weak convergence 

and diffusion approximations 
6:50 9 Petr Lansky, Federico Polito and Laura 

Sacerdote 
Input-output consistency in 
integrate and fire networks 
with application to neuronal 
spiking activity 

7:10 16 Marie Levakova and Susanne Ditlevsen Cointegration analysis of EEG 
signals 

7:30 Discussion in breakout rooms 
8:00 2 Alexander Vidybida, Olha Shchur and 

Victoria Mochulska 
From chaos to clock in 
reverberating neural net. Case 
study 

8:20 4 Rodrigo Santiago and Adriano Tort On the boundary conditions of 
avoidance memory 
reconsolidation: an attractor 
network perspective 



8:40 Discussion in breakout rooms 
9:00 end   
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Impact of the activation rate of the Ih current influences the neuronal membrane time constant and 
synaptic potential duration* 

 
Cesar C. Ceballos1, Rodrigo F.O. Pena2, and Antonio C. Roque3 

 
(1) Vollum Institute, Oregon Health & Science University, Portland, OR, USA.   

 
(2) Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers 

University, Newark, New Jersey, NJ, USA.   
 

(3) Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, 
University of São Paulo, Ribeirão Preto, SP, Brazil 

 
The hyperpolarization-activated cation current Ih is implicated in a variety of phenomena in neurons, including 
membrane input resistance, resting potential regulation and synaptic integration. In particular, the Ih current can 
modulate subthreshold potential changes by shortening excitatory postsynaptic potentials and decreasing their 
temporal summation [1,2]. The effect of the Ih conductance on synaptic potential shortening is well understood, 
however the role of the Ih kinetics on the time course of excitatory postsynaptic potentials (EPSPs) is yet 
unexplained. Here, we use a model of the Ih current model with either fast or slow kinetics to determine its 
influence on the membrane time constant (τm) of a CA1 pyramidal cell model. Our simulation results show that 
the Ih with fast kinetics decreases τm and attenuates and shortens the EPSPs more than the slow Ih. Hence, we 
conclude that the Ih activation kinetics is able to modulate τm and the temporal properties of EPSPs in CA1 
pyramidal cells. In order to explain how the Ih kinetics controls τm, we propose a new concept called “time 
scaling factor”. We then show that the Ih kinetics influences τm by modulating the contribution of the Ih 
derivative conductance to τm. Our results are potentially valid for multiple Ih currents and can help to improve 
our understanding of the role of the Ih current on neuronal dynamics.    
 
References 

 
[1] M. W. Remme and J. Rinzel. Role of active dendritic conductances in subthreshold input 
integration. Journal of computational neuroscience, 31(1), 13-30, 2011. 
 
[2] J. C. Magee. Dendritic hyperpolarization-activated currents modify the integrative properties of 
hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 18(19), 7613-7624, 1998. 

 
* This research was produced as part of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. It was 
also supported partially by the S. Paulo Research Foundation (FAPESP) Research, Innovation and 
Dissemination Center for Neuromathematics (CEPID NeuroMat, Grant No. 2013/07699-0). The authors also 
thank FAPESP support through Grants Nos. 2013/25667-8 (R.F.O.P.), 2015/50122-0 and 2018/20277 (A.C.R.). 
C.C.C. was supported by a CAPES PhD scholarship. A.C.R. thanks financial support from the National Council 
of Scientific and Technological Development (CNPq), Grant No. 306251/2014-0. This study was financed in 
part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 
001. 
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From chaos to clock in reverberating neural net. Case
study

Alexander Vidybida
1
, Olha Shchur

1
, Victoria Mochulska

2

(1) – Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna str., Kyiv, 03143, Ukraine

(2) – Taras Shevchenko National University of Kyiv, Faculty of Physics, Kyiv, Ukraine

It is now accepted (see, e.g. [1]) that knowing only neuronal types and their interconnections
(connectome) is not enough for understanding how a certain type of spatio-temporal activity
emerges in the brain. A concept of dynome is proposed as a “collection of experimental and
modeling observations” [1], aimed at obtaining a mechanistic explanation of various complex
brain dynamics. We believe that complex dynamics is an inherent feature of neural networks
with delayed interneuronal communication. A modeling illustration of this feature can be found,
e.g. in [2, 3]. In this contribution we propose yet another example of complex dynamical behavior
in a simple delayed neural net.

We model numerically a fully connected deterministic network of 25 LIF neurons placed at
5x5 lattice nodes. Propagation delays are taken proportional to the interneuronal distances. The
network is initially stimulated with a short sequence of 25 input impulses, each triggering one of
the 25 neurons. The sequence of the triggering moments constitutes a stimulus specificity. After
the initial stimulation, the network runs on its own, without external influence. A stimulus has
been found which triggers a seemingly chaotic behavior of the network’s state parameters, such as
voltage of a neuron. This type of dynamics lasts for a long time (Tr = 7.3 minutes) as compared to
the lattice diagonal propagation delay, Td = 5.7 milliseconds. After that, the dynamics becomes
periodic with period Tp = 9.6 milliseconds. The relaxation dynamics is positively checked for
being chaotic by several standard tests such as 0-1 test, arithmetic entropy, and sensitivity to
small perturbations of the input stimulus.

References

[1] N. J. Kopell, H. J. Gritton, M. A. Whittington, and M. A. Kramer. Beyond the connectome:
The dynome. Neuron, 83(6):1319–1328, 2014.

[2] A. K. Vidybida. Testing of information condensation in a model reverberating spiking neural
network. International Journal of Neural Systems, 21(3):187–198, 2011.

[3] A. Vidybida and O. Shchur. Information reduction in a reverberatory neuronal network
through convergence to complex oscillatory firing patterns. BioSystems, 161:24–30, 2017.
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Firing statistics of a neuron with delayed feedback
inhibition stimulated with a renewal point process

Olha Shchur
1
and Alexander Vidybida

1

(1) – Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna str. Kyiv, 03143, Ukraine

Recently, the importance of cortical disinhibition – the transient ceasing of inhibition – was

recognized for various functions, for instance, learning and memory [1]. It was shown that for

parvalbumin-expressing interneurons the main source of inhibition is autaptic transmission [2].

The latter means that such neurons send synaptic connections not only to other cells but also

to themselves. We study the impact of inhibitory autapse on neuronal activity. We consider

a class of non-adaptive spiking neuron models with delayed feedback inhibition. The neuron is

stimulated with a series of excitatory impulses, representing a stochastic point renewal process.

We calculate exactly the probability density function (PDF) p(t) for the distribution of output

interspike intervals (ISIs). The calculation is based on the known PDF p0(t) for the same neuron

without feedback and the PDF of ISIs for the input stream pin(t). Obtained results are applied

to the case of a neuron with threshold 2 when the time intervals between input impulses are

distributed according to the Erlang distribution.

References

[1] J. J. Letzkus, S. B. Wol↵, and A. Lüthi. Disinhibition, a Circuit Mechanism for Associative

Learning and Memory. Neuron, 88(2):264–276, 2015.

[2] C. Deleuze, G. S. Bhumbra, A. Pazienti, J. Lourenço, C. Mailhes, A. Aguirre, M. Beato,

and A. Bacci. Strong preference for autaptic self-connectivity of neocortical PV interneurons

facilitates their tuning to �-oscillations. PLOS Biology, 17(9):e3000419, 2019.
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On the boundary conditions of avoidance memory 
reconsolidation: an attractor network perspective 

Rodrigo Santiago and Adriano Tort 

Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil 

 
 
The reconsolidation and extinction of aversive memories and their boundary conditions have been 
extensively studied. Knowing their network mechanisms may lead to the development of better 
strategies for the treatment of fear and anxiety related disorders. In 2011, Osan et al. developed a 
computational model for exploring such phenomena based on attractor dynamics, Hebbian plasticity 
and synaptic degradation induced by prediction error. This model was able to explain, in a single 
formalism, experimental findings regarding the freezing behavior of rodents submitted to contextual 
fear conditioning. In 2017, Radiske et al. showed, in rats subjected to inhibitory avoidance (IA), that 
the previous knowledge of the current aversive context as non-aversive is a boundary condition for the 
reconsolidation of the shock memory experienced in that context. In the present work, by adapting the 
Osan et al. (2011) model to simulate the experimental protocols of Radiske et al. (2017), we show that 
such boundary condition is compatible with the dynamics of an attractor network that supports a 
synaptic labilization common to reconsolidation and extinction. Additionally, by varying parameters 
such as the levels of protein synthesis and degradation, we estimate boundary conditions and predict 
behavioral outcomes in the IA paradigm that can be tested experimentally.  
 
Funding 
 
This work was supported by CNPq and CAPES (Finance Code 001), Brazil. 
 
References 
 
Osan, R., Tort, A. B. L., & Amaral, O. B. (2011). A mismatch-based model for memory reconsolidation and 
extinction in attractor networks. PLOS One, 6, e23113. 
 
Radiske, A., Gonzalez, M. C., Conde-Ocazionez, S. A., Feitosa, A., Köhler, C. A., Bevilaqua, L. R., et al. (2017). 
Prior learning of relevant nonaversive information is a boundary condition for avoidance memory reconsolidation 
in the rat hippocampus. Journal of Neuroscience, 37, 9675–9685. 
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Shot noise, weak convergence and di↵usion
approximations∗

Massimiliano Tamborrino 1 and Petr Lansky
(1) – Department of Statistics, University of Warwick

Suppose that events (e.g., jumps representing the excitatory inputs impinging on a neuron)
occur in accordance to a Poisson process N(t) with constant rate � > 0. Associated with the
ith event is a nonnegative random variable Ji, which quantifies the event (e.g., its amplitude).
Denote by ⌧i the time of the ith event. Consider the stochastic process X(t) given by [?]

X(t) =

N(t)X

i=1

Jie
�↵(t�⌧i), X(0) = x0

where ↵ > 0 is a constant determining the exponential decay rate. When the Ji are independent
and identically distributed random variables, independent of the Poisson process N(t), the process
{X(t), t � 0} is called shot noise process.

Here, we consider nonnegative shot noise processes and prove their weak convergence (under
suitable derived conditions) to Lévy-driven Ornstein–Uhlenbeck (OU) process, whose features
depend on the underlying jump distributions. Among others, we obtain the OU-Gamma and
OU-Inverse Gaussian processes, having gamma and inverse gaussian processes as background
Lévy processes, respectively. Then, we derive the necessary conditions guaranteeing the di↵usion
limit to a Gaussian OU process, show that they are not met unless allowing for negative jumps
happening with probability going to zero, and quantify the error occurred when replacing the
shot noise with the OU process and the non-Gaussian OU processes. The results o↵er a new class
of models to be used instead of the commonly applied Gaussian OU processes to approximate
synaptic input currents, membrane voltages or conductances modelled by shot noise in single
neuron modelling.

References

[1] M. Tamborrino, P. Lansky. Shot noise, weak convergence and di↵usion approximations.
Physica D, 418, 132845, 2021.

∗Funding or other acknowledgment.
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Model of cell assemblies formation with iterative
winners-take-all computation and

excitation–inhibition balance

Viacheslav Osaulenko
1,2

and Danylo Ulianych
2

(1) – Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

(2) – KyivAIGroup, Kyiv, Ukraine

Cell assembly is a group of repeatedly active interconnected neurons and could be the main
candidate to represent and compute information in the brain. Here we present a model of cell
assemblies formation that is on a higher abstraction level than spiking neural networks (SNN)
but lower than the computation with assemblies [4, 5].

Spiking neural networks express rich and complex spatio-temporal dynamics but it is ex-
tremely di�cult to link the neural activation and synaptic plasticity with computation and in-
formation processing. Computation with assemblies simplifies dynamics and allows to rigorously
analyze the association memory [3] and pattern completion. The most common approach to
encode information to assembly is a k-winners-take-all function from the random projection of
the input [1]. It abstracts away inhibitory neurons and represents information as a vector with
k ones, (most active cells). Making the parameter k constant does not allow to encode di↵erent
input vectors with a variable number of active neurons as observed in biological neural networks.
Moreover, a significant amount of evidence shows that inhibitory neurons do not only select the
top winners, but also shape excitatory population activity from contextual and top-down inputs
[2].

We show that explicit inhibition that balances excitation is necessary to perform such com-
putations as decorrelation, clustering, and habituation. The formation of assemblies with two
interacting populations requires an iterative procedure that we call iterative winners-take-all
(iWTA). Similar to latency coding, it starts by activating the most active neurons in excitatory
and inhibitory populations that provide lateral feedback to both populations as shown in fig.1A.
On the next iteration, the neural activation threshold decreases, and new neurons are selected.
The iterative procedure continues until excitation and inhibition are mutually balanced. The re-
sulting inhibitory and excitatory cell assemblies are formed from active neurons at each iteration.
Fig. 2B illustrates the iWTA for one population where new encoding neurons are shown in green,
the resulting cell assembly - in red, and previously active neurons - in black.

Experiments with random input vectors and weights from the Bernoulli distribution show
that both populations converge to stable representations. The activation sparsity (fraction of
the number of active neurons) depends on the parameters of distribution allowing di↵erent input
vectors to be encoded with a variable number of active neurons, unlike the common kWTA.
One of the main features of kWTA is similarity preservation, that is similar inputs are encoded
into similar outputs. We show that iWTA also preserves similarity. However, iWTA does so
with more parameters (lateral weights) and more iterations to encode the input. We argue
that more parameters are necessary to get richer computations. We show that Hebbian-like

1
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Figure 1: A) the architecture of the network. Layer x is the input, y - excitatory, h - inhibitory
populations. B) Schematic illustration of iterative winners-take-all procedure. Each iteration
activates new neurons (green). In red shown the output encoding. C) The change of the overlap
between two excitatory populations that encode two di↵erent inputs with a learning iteration.
Learning decorrelates the assemblies while the kWTA activations do not.

learning of inhibitory-excitatory connections reduces the number of active neurons for repeated
inputs (habituation). Furthermore, learning these connections decorrelates the encodings of two
di↵erent inputs, fig.1C. Learning of excitatory-excitatory connections has an opposite e↵ect, the
resulting encodings increase their overlap. This overlap encodes the mean pattern from both
inputs that can be linked to clustering or noise reduction, but more experiments are required.

Overall, we present a model with explicit inhibitory neurons that through balanced excitation-
inhibition and iterative winners-take-all procedure forms neural cell assemblies. The model pre-
serves the advantages of common kWTA but requires more parameters to get richer computations.
We hypothesize that learning lateral weights might provide the basic mechanisms for set opera-
tions on neural populations.

References

[1] S. Dasgupta, C. F. Stevens, and S. Navlakha. A neural algorithm for a fundamental computing
problem. Science, 358(6364):793–796, 2017.

[2] J. S. Isaacson and M. Scanziani. How inhibition shapes cortical activity. Neuron, 72(2):231–
243, 2011.

[3] A. Knoblauch, G. Palm, and F. T. Sommer. Memory capacities for synaptic and structural
plasticity. Neural Computation, 22(2):289–341, 2010.

[4] G. Palm, A. Knoblauch, F. Hauser, and A. Schüz. Cell assemblies in the cerebral cortex.
Biological cybernetics, 108(5):559–572, 2014.

[5] C. H. Papadimitriou, S. S. Vempala, D. Mitropolsky, M. Collins, and W. Maass. Brain
computation by assemblies of neurons. Proceedings of the National Academy of Sciences,
117(25):14464–14472, 2020.

2



Refining connections in developing neural networks

Snigdha Singh, Natalie Gonzales, Michael Stiber

Computing and Software Systems Division, School of STEM

University of Washington, Bothell, WA 98011, USA

The phases of neural development include genesis of neurons, outgrowth of axons and dendrites to

form network connections, and refinement of the network by adjusting and removing synaptic connec-

tions [1]. Spike-time-dependent plasticity (STDP) has emerged as one of the most widely used plasticity

mechanisms for refinement of neural networks due to its physiological realistic induction and evidence of

its presence in vivo [3]. Studying refinement in neural cultures has obvious physiological barriers which

prevent collection of detailed information. The current work attempted to develop a better understanding

of the biological processes involved in the refinement of the human nervous system by using a neural

network simulator to replicate the refinement phase, and record temporal and spatial resolution of individ-

ual neuron spiking activity. We present results from simulations implementing STDP to refine a cortical

growth neural network model (equivalent to 28 days development in vitro [2]), that demonstrate that net-

work connections get pruned and tuned after STDP, and the process replicates the refinement phase of

neural development.

References

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. Watson. Molecular Biology of the Cell.
Garland, 4th edition, 2002.

[2] F. Kawasaki and M. Stiber. A simple model of cortical culture growth: burst property dependence on

network composition and activity. Biol Cybern, 108(4):423–443, Aug. 2014.

[3] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian learning through spike-timing-

dependent synaptic plasticity. Nature Neuroscience, 3(9):919–926, Sept. 2000. Number: 9 Publisher:

Nature Publishing Group.
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(a) (b)

Figure 1: Edge distribution in the network at the end of the growth simulation and after the STDP simula-

tion. X and Y axes are neuron indices for all 10,000 simulated neurons. Points plotted indicate connections

between neurons. Limited resolution in this graph precludes presentation of the full detail of the 10,000

by 10,000 connection matrix. After growth, the network has a recurring pattern, indicating uniform sym-

metric connections due to repetition in the network layout (a). After STDP, the network has asymmetric

connections and significantly less number of points (connections) than in the growth network (b). This

reflects the decreased number of connections after pruning using STDP.

(a) (b)

Figure 2: Change in connections between four central nodes at the end of the growth simulation and after

the STDP simulation. Points denote nodes and lines connecting them represent edges. At the end of

the growth simulation, edges are bidirectional (a). After STDP, edges are unidirectional as weights get

strengthened in one direction and weakened in the other, the connection between nodes 4 to 3 is pruned,

and all other synaptic weights are tuned (b).
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Asynchronous irregular activity coexists with
power-law distributed neuronal avalanches∗

Mauricio Girardi-Schappo
1*
, Emilio F. Galera

2
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Neuronal avalanches and asynchronous irregular (AI) firing patterns have been thought to
represent distinct frameworks to understand the brain spontaneous activity. While neuronal
avalanches are typically found in systems with slow accumulation and fast dissipation of ten-
sion, AI activity happens due to a fluctuation-driven state due to excitation and inhibition (E/I)
synaptic balance. Here, we develop a new theory of E/I balance that relies on two homeostatic
adaptation mechanisms: the short-term depression of inhibition and the spike-dependent thresh-
old increase, both of which are biological mechanisms [1, 2]. In an early work, we numerically
showed that these two mechanisms are capable of generating synaptic balance with AI activity
via the mechanism of Self-Organized quasicriticality [3].

However, the relation between SOqC, AI firing via synaptic balance and power-law (PL)
distributed neuronal avalanches is not entirely known. While some authors advocate that AI is
incompatible with PL avalanches [4], others showed that these two regimes are separated in the
phase diagram of a particular model [5]. Here, we develop an analytical theory supported by
computational simulations of neuronal networks and show that these two regimes (AI and PL
avalanches due to SOqC) happen simultaneously. And more interestingly, such coexistence always
happens under self-organized synaptic balance, irrespective of any fine-tuned model parameter [6].

First, we turn o↵ the adaptation and show that the thus defined static system has a typical
critical point commonly attributed to self-organized critical models [7]. Then, we turn on the
adaptation and show that the network evolves to a dynamic regime in which: (I) E/I synapses
balance regardless of any parameter choice; (II) an AI firing pattern emerges; and (III) neuronal
avalanches display power laws. This is the first time that these three phenomena appear simul-
taneously in the same network activity. Thus, we show that the apparently opposing frameworks
are unified into a single dynamics thanks to the adaptation mechanisms. In our model, the AI
firing pattern is a direct consequence of the hovering close to the critical line where external
inputs are compensated by threshold growth, creating synaptic balance for any E/I weight ratio.
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Biophysical  and more abstract,  mathematical,  models  of  neurons aim to describe the information
transmission within a neural network. The models are intrinsically stochastic for at least two reasons.
First, the experimentally observed neuronal activity is up to a certain extent always characterized by
random fluctuations, and secondly stochastic modeling serves as a tool to quantify the information
contained in the neuronal activity.
To investigate the information transfer,  the input and output part of the network model has to be
specified. Up to our knowledge, the consistency between the input network properties and neuronal
output has never been investigated. The question posed in this talk is to recognize peculiar properties
for which the input to the neurons determines the same properties in the output. In particular, we refer
to the distributional properties of input and output ISIs. We will see that the simplicity of the question
does not imply a simple answer. 
The input-output consistency of network models seems to be connected to the probabilistic concept of
“heavy tails” in ISIs distribution. In 1964, Gernstein and Mandelbrot proposed the integrate-and-fire
model to account for the observed heavy-tailed behavior of the ISIs distribution. They suggested to
modeling the membrane potential  through a Wiener process in order to get  the inverse Gaussian
distribution as its  first  passage time distribution (i.e.  a stable distribution,  hence exhibiting heavy
tails).
Many alternative and more realistic variants of the original model appeared in the literature in the
following decades but the problem of input-output consistency has never been very much considered.
Taking advantage of the recent mathematical progresses on multivariate regularly varying random
variables, we propose to formulate the model starting from its main property, i.e. the heavy tails of the
ISIs distribution. Then, we follow the integrate-and-fire paradigm to modeling the membrane potential
evolution as a randomized random walk whose jumps result from the superposition of the regularly
varying inter-times of the post-synaptic signals of the  input neurons participating the network. We
finally show that input-output consistency is obtained from closure properties of multivariate regularly
varying distributions.
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Duration of the synaptic influence determines phase 
difference between asymmetrically coupled oscillators* 
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It is critical for animals to have the capability to adjust their locomotor pattern to suit internal and 
environmental demands, to allow them to move forwards and backwards, to swim in water, fly in air 
and walk/run/crawl on land. However, the neuronal mechanisms underlying the transitions between 
motor patterns are poorly understood. A simple experimental animal to examine these questions is the 
2-day old hatchling Xenopus tadpole, which can swim or struggle [1]. During swimming, a wave of 
neuronal activity propagates from head to tail, which is reversed during struggling. The spinal cord 
circuits that generate these activities are well defined, and the mechanisms through which these circuits 
generate a swimming pattern of activity are well understood. However, current understanding of 
backward wave propagation and of the transition between the forward and backward patterns is limited 
[2]. To study possible switching mechanisms, we model the tadpole spinal cord by a chain of identical 
Morris-Lecar [3] oscillators with directed head-to-tail synaptic coupling (Fig. 1a). We found that this 
fixed direction of connectivity between identical oscillators can support different directions of activity 
propagation, depending on the duration of the synaptic influence.  

Specifically, with this descending (head-to-tail) excitatory connectivity between oscillators, short 
synaptic pulses result in a tail to head propagation of activity. However, lengthening influence 
duration can decrease the phase difference between neighboring oscillators and in some cases reverse 
it. Thus, studying the chain model, we find that the model parameter r, describing the duration of 
synaptic influence relative to the duration of the active phase of the oscillation, controls the direction 
of activity propagation (Fig. 1b-c). For a small r, activity propagates backward from tail to head, and 
in the opposite direction for large r. 

To examine how this reversal of the phase difference happens, we focus on two identical relaxation 
oscillators with a one-way excitatory connection. This reduced model represents the first section of the 
chain where the most rostral oscillator is the independent driver connected to a driven oscillator. 
Generally speaking we can expect that the driver generates a spike which forces the driven oscillator to 
generate a spike with a short phase-delay and this sequence of events will be periodically repeated. 
However, the limit cycle corresponding to the phase-delay dynamics is unstable.  

We find that for a short relative synaptic influence r, there is a stable limit cycle with the phase-advance 
dynamics: the driven oscillator generates a spike and shortly after the driver spikes (Fig. 2a). This 
contra-intuitive phase advance phenomena corresponds to the phase advanced limit cycle (A-cycle). 
Increasing the value of parameter r leads to a smooth transition to a new phase relationship where a 
spike of the driven oscillator is preceded with a short delay by a spike of the driver oscillator (Fig. 2b). 
This phase relationship corresponds to the phase delayed limit cycle (D-cycle). During this transition 
phase difference (phase of the driven oscillator minus phase of the driver) continuously changes from 
positive to negative values while the limit cycle remains stable (no bifurcations occur). Fig. 2c shows 
the phase difference diagram under variation of two model parameters: the relative duration of synaptic 
influence r (horizontal axis) and the strength of synaptic influence g (vertical axis). Color codding 
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shows the phase difference between two oscillators: positive values (brown-green) correspond to A-
cycle and negative values (blue) correspond to D-cycle. 

We find that the phase-advanced and phase-delayed limit cycles also exist in the Hodgkin-Huxley 
asymmetrically coupled system and the variation of synaptic duration can switch the sign of phase 
difference. For asymmetrically coupled Morris-Lecar oscillators both phase relationships exist across a 
wide range of time-scale-separations and values of external current. Small differences in frequencies of 
coupled oscillators don't destroy A-cycle, but making the driving oscillator run faster than the driven 
oscillator will eventually change A-cycle to D-cycle (this transition isn’t smooth and involves 
bifurcations). The effect of the duration of the synaptic influence on the phase difference between the 
oscillators is also preserved in the presence of a weak coupling from the driven to the driver. 

For calculation of the phase difference diagram we combined three techniques: finding limit cycle by 
solving a periodic boundary value problem, simple continuation using coupling strength as an active 
parameter, and starting continuation (for given coupling duration) from very low values of coupling 
strength where limit cycles were calculated semi-analytically as stable fixed points of phase equations 
derived using Malkin's theorem [4]; deriving phase equations involves computation of iPRC and phase 
response function for which we use similar approach to [5].  

Our results show that a variation in the relative synaptic duration can robustly change the direction of 
the phase relationship between asymmetrically coupled phase-locked oscillators. 

 
Figure 1. Wave propagation along the chain of Morris-
Lecar oscillators. 
a. Chain of 20 oscillators with one-way excitatory synaptic 
connections; direction from 1 to 20 corresponds to rostral-
caudal axis in the tadpole spinal cord. 
b. From tail to head wave propagation for a small value of 
parameter r.  
c. Rostro-caudal (from head to tail) wave propagation for a 
large enough value of parameter r.  
  
 
 
 
 
 
Figure 2. Waveforms of A-cycle and D-cycle and phase 
difference diagram showing transition between 
these types. 
a-b. Trajectories of A-cycle (left) and D-cycle. Black 
and red trajectories correspond to the driver and driven 
oscillators, respectively.  
c. Diagram shows  the phase difference between two 
oscillators as a function of two parameters: r and g.  
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Bias in the estimation of coupling strength between
oscillators
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Identification of coupling strength between interacting oscillators from time-series data is an
important task [1, 2, 3]. It is known that phase oscillator models well approximate dynamics of
weakly coupled oscillators [4]. Once the oscillator phases are extracted somehow from time-series
data, one may fit the data to a given phase oscillator model using, e.g., a maximum likelihood
estimation. To obtain phases from time-series data, Hilbert transform is often used [5]. However,
the estimation of oscillation phases using the Hilbert transform is accurate only in a limited
situation. Therefore, in general cases, inferred parameter values using the estimated phases also
lack reliability.

We numerically generated oscillatory data of a coupled-oscillators system, obtained the phases
using the Hilbert transform, and then estimated the coupling strength. The numerical experi-
ments revealed that the estimation of the coupling strengths is biased when the oscillators are
synchronized. The estimated value is roughly half of the true value (Fig. 1). In contrast, the
coupling strengths are correctly estimated when the oscillators are not synchronized. Such a
property of the Hilbert transform is problematic, for example, in estimating the direction and
the network structure of coupling, for which the methods have been discussed [3, 6].

To identify the reason for this property, we analyzed the nature of phase acquisition by the
Hilbert transform and found that the high-frequency components of the phase are halved when the
Hilbert transform is performed. In other words, the Hilbert transform has the effect of smoothing
the phase time series. Therefore, it cannot recover the noisy phase time series correctly. When
the oscillators are synchronized, the phase difference between them is fixed around a constant
value. In this case, the coupling term represents the response to the change in phase difference
mainly caused by noise. Thus, the smoothing effect of the Hilbert transform has a significant
effect on the estimation of coupling strength. On the other hand, in the non-synchronized system,
the coupling term is the response mainly to the drifting phase difference, and the contribution of
noise is relatively small. Thus, the coupling strength is correctly estimated. We have developed a
new phase acquisition method based on the analytical results of the Hilbert transform. By using
this method, we can accurately recover the noisy phase time series. Furthermore, the obtained
phase can be used to correctly estimate the coupling strength (Fig. 1 orange open circles).
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Figure 1: Estimated value of coupling strengths G are plotted against the difference of natural
frequencies Ω2 − Ω1 between coupled two oscillators. When the phases obtained by the Hilbert
transform are used in the estimation (blue cross marks), the errors and standard deviations are
large, especially when Ω2 − Ω1 < 2.0, i.e. two oscillators are coupled. On the other hand,
when using the phases estimated by our method (orange open circles), the estimation accuracy
is improved.
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Instantaneous Firing Rate Dispersion Can Decrease
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One of the open questions in computational neuroscience is whether the apparent stochastic
nature of neuronal activity contributes to the information processing or is a part of the intrinsic
noise [1, 2]. The notions of variability and randomness of inter-spike intervals (ISI) have been
proposed and studied [3] for this purpose. The analysis of ISIs only covers the temporal char-
acteristics of the spiking data and additional methods are needed to extend this analysis to the
rate coding perspective [4]. In this article we focus on the classical concept of the instantaneous
firing rate [5], which is based on both the spike timing and rate coding perspectives [6] (Figure
A).
We consider di↵erent spiking regimes corresponding to several standard statistical ISI models
of neuronal activity and we study the probability distributions of the instantaneous firing rate
[7] (Figure B). Furthermore we use di↵erent indices of statistical dispersion [3] to determine the
variability and randomness of the instantaneous firing rate in each case.
We find that the relationship between the variability of the ISIs and the instantaneous firing rate
is not monotonous in general. Counter-intuitively, an increase in the randomness (based on en-
tropy) of spike times may either decrease or increase the randomness of instantaneous firing rate,
in dependence on the neuronal firing model (Figure B) [7]. We apply our theoretical methods to
experimental data and report that the instantaneous rate analysis may provide additional infor-
mation about the spiking activity based on the ISIs. Our findings point towards the ambiguous
nature of rate- and temporal-based qualities of the neuronal signal.
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Figure: (A) An overview of the independent and identically distributed ISIs T ⇠ fT (t), under
steady state conditions. The length-biased intervals T̃ ⇠ t̃fT (t̃) are observed at a fixed reference
time t0 and the inverse of T̃ is used to define the instantaneous rate R ⇠ fR with the property
that E(R) = 1/E(T ). (B) Comparison of the dispersion measure of the ISIs and instantaneous
rate for the mixture distribution with of two exponentials with a fixed refractory period, varying
weight of probability components in the direction of the arrows, and varying values of the rate
paratmeter of the second component b, while the first one is fixed.
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Introduction: Electric fish explore their near environment polarizing their surroundings with an
electric organ discharge (EOD). Impedance inhomogeneities perturb the field projecting an electric
image to the fish skin, characteristically covered by electroreceptors. The electrosensory lobe (ELL) is

the first neural relay for processing such electric
images. In Gymnotus omarorum this structure
incorporates two electrosensory paths originated in
two different electroreceptor types. A fast path in
which primary afferents contact a set of spherical
neurons (black contacted by a green calix, Fig. 1)
which directly project onto the mesencephalon, and
a slow pathway, a cerebellum-like circuit of
columnar organization that compares a somato-
topically organized input with central expectations.
The anatomy of one of these columns is schematized
in Fig. 1. The main comparators are pyramidal
neurons differentiated anatomically by the presence
(basilar BP) or absence (non-basilar NBP) of a
basilar dendritic process contacted directly by
afferents. Besides these differences BP and NBP
show different intrinsic properties [1].
Methods: Using unitary recordings in self-
discharging descerebrated preparations [2], here we
address the following questions: a) Is there a frame
to frame (i.e. EOD to EOD) encoding of electric
images? b) What is the role of spike timing in signal
encoding? c) Given that these fish show strong
novelty responses to changes in the impedance of an

object, does this detection occurs at the electrosensory lobe?. Modelling was performed according the
connectivity shown in Fig. 1 using a mixed strategy. While the deep neurons were simulated as leaky-
integrating-and-fire units, the intrinsic properties of the pyramidal neurons were simulated by a
Hodgkin and Huxley-like model that accounted for the pacemaker and spike firing adaptation
properties of the NBP and the slow rising excitability of BP. The input was modelled as a train of
high frequency spikes modulated in spike number and intratrain frequency by stimulus intensity and
showing spike firing adaptation as it was shown previously [3]

mailto:caputiangel@gmail.com
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Results: Two main types of units were found in the ELL: a) one-to-one units are located at the deep
neuropile (NP) firing at about 5 ms after the EOD and hardly modulated by local stimuli; b) phase
preference units fire once every 2 or 3 EODs at rest but can increase their response up to three per
inter-EOD-interval in the absence of nearby objects. These units can be classified by their post EOD
histograms. Varying from the unit type to type, in general 3 preferential firing intervals after the EOD;
one at about 5–7 ms, a second one surrounding 12–13 ms and a third one after 20 ms. All neurons
showed a silence between 7 and 9 ms suggesting the presence of a strong post-EOD inhibition. The
relative magnitude of the peaks at each of the three modes can be used as a main defining feature of
the functional neuron type (Fig. 2).

Post-EOD histograms of those units recorded from the centro-medial map using a multiprobe
electrode placed perpendicular to the layers allowed to associate firing patterns and neuron somata
locations in the electrosensory lobe layers and classify these neurons in functional types (Fig. 2).
The characteristic peaks of a neuron type are modulated differently when objects of similar shape but
different impedance are placed at the same site (Fig 3 A and B). The earliest firing period showed
tonic changes with object movements, while the intermediate and late periods were often dependent
on the present input and previous history of stimulation. Consistently, when provoking novelty
responses by the increment of the impedance of an
object stationary with respect to the fish body, the
probability and latency increased or decreased as a
function of the change in impedance in a stepwise
manner and show a gradual return to a baseline
(phasic-tonic adaptation, Fig. 3C).
Simulations showed that different parameter
combinations can satisfy the stationary patterns and
suggests a frame-to-frame image encoding in the
spike firing patterns. However, our data suggest that
additional components (for example fast feedback
from PRAE or synaptic plasticity at parallel fibers
apical dendrites of pyramidal neurons) should be
further explored and included in the model to account
for the dynamics of the post EOD pattern adaptation.
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State-of-the-art techniques allow researchers to record large numbers of spike trains in parallel
for many hours. In particular, the number of simultaneously recorded neurons has been doubled
every seven years [1]. Such recordings allow us to infer the fine structure of neural circuits, that
is, the synaptic connectivity between neurons.

The Cross-Correlation (CC) method is a standard method for estimating the connectivity
from parallel spike trains [2]. While the CC method has been used to estimate neuronal con-
nectivity, its estimate becomes unreliable when the neural activity fluctuates largely. Previous
works have extended the CC method to overcome this issue [3, 4]. For instance, Amarasingham
et al. proposed to jitter the timestamps of spikes and to compare the jittered cross-correlogram
to the original one [4]. However, it is still challenging to estimate the synaptic connectivity from
parallel spike trains in vivo that usually exhibit large fluctuations.

In this contribution, we propose two approaches to resolve this large fluctuation problem:
Generalized Linear model for Cross-Correlation (GLMCC) [5] and COnvolutional Neural Network
for Estimating synaptic ConnecTivity (CONNECT) [6]. Both methods are extensions of the CC
method. While GLMCC estimates the synaptic connectivity by fitting a Point process model
to the cross-correlation data, CONNECT estimates it by using a neural network that outputs
the connectivity from the cross-correlogram. We demonstrate that these methods can robustly
estimate the synaptic connectivity from parallel spike trains by applying it to two synthetic
datasets generated by the Hodgkin-Huxley model and the multi-timescale adaptive threshold
model [7, 8]. We also evaluate the estimation performance of the proposed methods and existing
methods, including the jittering method [4]. The proposed methods (GLMCC and CONNECT)
performed better than the conventional methods. A ready-to-use version of the web application,
the source code, and example data sets are available on our website [9].

∗We thank Masahiro Naito for his technical assistance in developing a web-application program. R.K. is
supported by JSPS KAKENHI Grant Numbers JP17H03279, JP18K11560, JP19H01133 and JPJSBP120202201,
and JST PRESTO Grant Number JPMJPR1925, Japan. S.S. is supported by JST CREST Grant Number JP-
MJCR1304, and the New Energy and Industrial Technology Development Organization (NEDO).
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Inhibitory noise decreases membrane potential
fluctuations and may lead to increased firing

regularity∗
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Inhibitory input to neurons increases synaptic current fluctuations. This has led to the conclu-
sion that inhibition contributes to the high spike-firing irregularity observed in vivo [2]. However,
it has been observed experimentally that evoked inhibitory input to the neuron may decrease its
membrane potential fluctuation [1], due to the shunting e↵ect of the inhibition. In our study we
seek to explain why the shunting e↵ect can overpower the noise from increased synaptic current
fluctuations and whether the inhibitory input could actually lead to more regular spike firing.

We used single compartmental neuronal models to show that evoked inhibitory input decreases
the membrane potential fluctuations if the signal to noise ratio of the input scales slower than the
square of the input intensity, a condition which is implicitly satisfied for the Poisson shot noise.
Moreover, we show that in order to reproduce this behavior in neural models, reversal potentials
and synaptic filtering has to be included in the model of the synaptic input. Both properties are
commonly omitted to allow for an easier analytical treatment.

To understand whether the decreased membrane potential fluctuations can lead to higher
spike-firing regularity, we used models with di↵erent spike-firing adaptation (SFA) mechanisms.
When SFA was implemented through ionic currents or not at all, higher levels of inhibition led
to lower firing regularity, despite the decreased membrane potential fluctuations. On the other
hand, we observed that evoked inhibition leads to more regular firing (while keeping the mean
firing rate unchanged), if the neuron exhibits a dynamic spike firing threshold (Fig. 1E). See [3]
for the published version of the presented work.
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Figure 1: The increase in inhibitory input (A) increases the fluctuations of the synaptic current
(B), but decreases the fluctuations of the membrane potential of a non-spiking membrane(C). The
pre-synaptic spike trains are modeled as Poisson point processes. When a spike-firing mechanism
is implemented, the evoked inhibition decreases the firing regularity (increases the Fano factor,
orange trace) in a model with M-current SFA (D), but increases the firing regularity in a model
with dynamic threshold (E). For illustration, the steady state firing rate (blue trace) is kept
approximately constant by properly scaling the excitatory input.
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Cointegration analysis of EEG signals

Marie Levakova and Susanne Ditlevsen
Department of Mathematical Sciences, University of Copenhagen

Universitetsparken 5, DK 2100, Copenhagen, Denmark

Recordings obtained during EEG sessions are an invaluable source of information about activ-

ity of neuronal systems on a global level and the statistical toolbox to handle this kind of data has

been growing over the last decades, with techniques focusing both on time and frequency domain.

The aim of our work is to enrich the toolbox with a statistical methodology suited to investigate

the functional network structure of the EEG channels setup. The cointegration methodology has

been originally developed with econometrics applications in mind [1], however, the idea to use

cointegration in realm of phase-coupled oscillating systems in physics [2] and in neuroscience in

particular [3] has emerged recently.

We assume that the generating process of EEG signals is a system of coupled Ornstein-

Uhlenbeck processes, which implies that observations in discrete time points are an integrated

(nonstationary) vector autoregressive (VAR) process. The idea of cointegration analysis is to

discern which part of the trending behavior in the data can be attributed to stochastic trends of

random-walk type and which part stems from long-term linear equilibrium relationships, termed

cointegration relationships.

The estimation procedure o↵ers a couple of possibly interesting parameters: the cointegration
rank gives the number of independent cointegration relationships and the number of independent

stochastic trends; the cointegration matrix contains coe�cients of cointegration relationships;

and the loading matrix describes how the system reacts to deviations from the cointegration

relationships. Most importantly, the product of the loading matrix and the cointegration matrix

describes the functional network structure of the channels.

The estimation procedure, known as Johansen’s procedure [4], has been designed for dimen-

sions up to 10, which is a limit that EEG data exceed by far. The issue of high dimension is

probably the biggest, but not the only technical aspect that needs to be addressed before the

cointegration methodology can become a regular statistical procedure for EEG data. The results

from applying cointegration analysis to a real dataset from a visual task experiment with human

participants as well as challenges encountered so far will be presented.
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Gaze-evoked nystagmus with centripetal drifts and 
centrifugal microsaccades during gaze fixation               

and its minimal neuromechanical model 
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Fluctuation of gaze during gaze fixation at a desired position is composed of the drifts-tremor (DRT) 
and microsaccades (MS). Neural mechanisms underlying such fixational eye movement (FEM) have 
not been well understood. Notably, during fixation at a point laterally far from the center of the face 
with a large gaze angle, stochastic oscillatory motion can be observed, referred to as the gaze-evoked 
nystagmus (GEN). GEN typically consists of centripetal DRT and centrifugal MS, and the DRT 
absolute velocity and GEN occurrence rate increase according to the increase in the gaze angle [1-3].  
Not a few healthy subjects exhibit GEN at small gaze angles less than 20° [1]. GEN may be the universal 
instability of the oculomotor system. This study aims to clarify the origin of the stochastic GEN. To 
this end, we quantified the GEN in terms of stochastic time series analysis, and constructed a minimal 
neuromechanical model of GEN. First, FEMs at five horizontal gaze angles (-15.2°, -7.76°, 0°, 7.76°, 
15.2°) for 35 seconds were measured from eight healthy subjects. Each FEM time series was 
decomposed into DRT and MS time series. Then, we estimated the centripetal DRT horizontal velocity 
by estimating the slope of the regression line of the DRT time series. Similarly, the counter effect of 
MS was quantified by the slope of the regression line of the MS time series, which is determined by the 
jump width and occurrence frequency. As a result, we confirmed DRT and MS have the centripetal and 
centrifugal trends, respectively, and the absolute drift velocity of each trend was about 0.1 [°/s] at most, 
which was consistent with previous studies that assessed the tendency of centripetal DRT in other ways 
[2-3]. We then constructed a model using a rigid-body eyeball and Hill-type muscle models of 
horizontal extraocular muscles. We assumed that the globe is restricted to rotate only horizontally, and 
only two identical muscle models (corresponding to the lateral and medial rectus) are attached to each 
side of the globe, where a force balance between two antagonist muscles provides a basis of the gaze 
fixation and FEM. Viscoelasticity of the mechanical components was identified based on measurement 
studies of the mechanical parts of human eye movements [4-5]. We then argued that simulating GEN 
during FEM based solely on simple mechanical models with motor noise is not easy, leading to a 
hypothesis on intermittency in the motor commands for antagonistic muscles. Finally, we propose a 
minimal model for simulating GEN.  
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Qualitative properties of numerical methods for the
inhomogeneous geometric Brownian motion⇤
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The inhomogeneous geometric Brownian motion (IGBM) is used to model changes in the
membrane voltage of a neuron between two consecutive spikes [1]. It is a member of the class of
Pearson di↵usions, and characterised by an inhomogeneous drift term. Di↵erent from other well-
known Pearson di↵usions, such as the Ornstein-Uhlenbeck process and the square-root process
(also known as Feller process), no method of exact simulation is known for the IGBM. In this talk,
we analyse and compare qualitative features of di↵erent numerical methods for the IGBM [2].
The conditional and asymptotic mean and variance of the IGBM are known and the process can
be characterised according to Feller’s boundary classification. We compare the frequently used
Euler-Maruyama and Milstein methods, two Lie-Trotter and two Strang splitting schemes and
two methods based on the ordinary di↵erential equation (ODE) approach, namely the classical
Wong-Zakai approximation and the recently proposed log-ODE scheme. First, we prove that, in
contrast to the Euler-Maruyama and Milstein schemes, the splitting and ODE schemes preserve
the boundary properties of the process, independently of the choice of the time discretisation
step. Second, we derive closed-form expressions for the conditional and asymptotic means and
variances of all considered schemes and analyse the resulting biases. While the Euler-Maruyama
and Milstein schemes are the only methods which may have an asymptotically unbiased mean, the
splitting and ODE schemes perform better in terms of variance preservation. The Strang schemes
outperform the Lie-Trotter splittings, and the log-ODE scheme the classical ODE method. The
mean and variance biases of the log-ODE scheme are very small for many relevant parameter set-
tings. However, in some situations the two derived Strang splittings may be a better alternative,
one of them requiring considerably less computational e↵ort than the log-ODE method.
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Using causal information theory to characterize
cortical signals during a Go/No-Go task
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(1) Instituto de F́ısica, Universidade Federal de Alagoas, Alagoas, Maceió, Brazil
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The characterization of dynamic systems through the theory of causal information has been
shown to be extremely important in several areas of science, as it allows to gauge unique charac-
teristics and compare them. Specifically, this methodology has already proved useful and e↵ective
in areas such as ecology, economics, literature, neurosciences, among others. It is enough that
the complex system presents a time series to apply the information theory methods.

At present, the analyzed system was the dynamic of the brain of an adult monkey measured
through Local Field Potential (LFP) signals. The four regions measured were: Primary Motor
cortex (Region 1) and Primary Somatosensory cortex (Region 2) and two sites in the Posterior
Parietal cortex (Region 3 and 4). The data were measured during the realization of a Go/No-
Go task, in which the monkey keeps his hand pressed on a lever (No-Go) or removes it (Go)
depending on the visual stimulus he receives. The task was repeated 710 times and each one was
divided into 11 windows with 90 milliseconds of duration each. The visual stimulus occurs at
the third window, for this reason, the first and the second windows were used as the baseline to
calculate mean and standard deviation of the information indices.

The objective was to verify if there are dynamic di↵erences for each region when the monkey
releases or holds its lever pressed during a task. For that, two quantifiers of the causal information
theory were used, they are: Normalized Shannon Entropy (H(P )) and Statistical Complexity
(C(P, Pe)) that were measured for the 11 windows of the four regions. A 2-D graph, called
Causal Information Plane, was also plotted, where the axes are C(P, Pe) versus H(P ), in order
to obtain more information about the system. For greater precision, asymmetry indices were also
calculated to take into account the di↵erence in complexity and entropy for the Go and No-Go
trials, as well as their respective means and standard deviations.

In summary, we show that the methodology used is a useful tool to characterize the informa-
tion process of brain signals. We can determine cortical regions in which the specific response to
information is processed and at which point in the task the response is most evident. Combined
with the asymmetry index and their respective means and standard deviations, it was possible
to corroborate the measurements accurately, as well as to estimate if the response time happens
earlier than expected in other methodologies (such as average potential). By dividing the trials
into windows, we can see the dynamic evolution for each region as the task progresses. Finally,
this methodology of extract a probability density function from the system, allows us to investi-
gate several time scales to determine a characteristic time (which maximizes the complexity) of
the time series taken from the dynamic system.

CAPES research development agency and the Physics Institute of the Federal University of Alagoas.
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Figure 1 shows the causal information plane for the moment of the task (Wi) where the
di↵erence between Go and No-Go trials becomes more evident for each region. It can be said
that it is in these windows that the main brain processing of these regions occurs for this type
of cognitive task. These windows are also compared with W1 (in gray), where no information
processing is expected to occur. The black curves are the maximum Cmax and minimum Cmin

curves of complexity.

(a)
(b)

(c) (d)

Figure 1: Multi-scale Complexity-Entropy plane for the first 15 time delays ⌧ . For each region
we depict C versus H values for the first window W1 (Go and No-Go trials in grey) and a post-
stimulus window that shows an illustrative separation between Go and No-Go trials in the plane.
(a) Region 1: W11. (b) Region 2: W7. (c) Region 3: W4. (d) Region 4: W7. Solid lines in black
represent the maximum and minimum complexity values for a fixed value of the entropy.
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Classifying Mild Cognitive Impairment from EEG

Patterns for Dementia Onset Prediction
∗
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A rise in dementia cases globally significantly increases healthcare expenses. According to the
World Health Organization, nearly 50 million older adults live with progressing dementia [2]. A
feasible utilization of AI shall advance early prediction and following cognitive well-being improve-
ment within the so-called “digital pharma” or “beyond a pill” non-pharmacological-therapeutical
strategies.

We report pilot study results of EEG experiments with older adults in the RIKEN Center for
Advanced Intelligence Project (AIP) as an extension to our previous behavioral [3] and EEG [4]
studies in a passive BCI setting for dementia onset prediction through a binary classification,
comparing shallow and deep machine learning (ML) models, of normal cognition versus mild
cognitive impairment (MCI). The RIKEN Ethical Committee approved the study, and it adheres
to The Declaration of Helsinki. The 35 elderly take part; a number of females = 22; mean
age = 73.5±4.85 years old. All participants receive monetary gratification, and they give written

∗This research was supported in part by the KAKENHI, the Japan Society for the Promotion of Science Grant
No. JP18K18140 (MSA), JP18KT0035 (MOM), JP19H01138 (MOM), JP20H05022 (MOM), JP20H05574 (MOM),
and the Japan Science and Technology Agency AIP Trilateral AI Research Grant No. JPMJCR20G1 (MOM, TMR).

(a) Attended face pr  0.033 (b) Inhibited face pr ⌧ 0.000 (c) Attended emotion pr ⌧ 0.000 (d) Inhibited emotion pr ⌧ 0.000

Figure 1: MFDFA feature distributions in four-channel EEG during short-video with face- and
facial-emotion-short-term-memory tasks. Panels (a) and (b) present results for face oddball cases
of attended and inhibited stimuli, while (c) and (d) for the same face emotional expressions. The
MCI subject had significantly higher median MDFA scores as evaluated with Wilcoxon rank sums
tests and shown in panel captions.
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(b) Emotional oddball

Figure 2: Classification results using shallow (linear regression – LR; linear discriminant analysis
– LDA; shrinkage LDA; linear support vector machine – linear SVM; radial basis function SVM;
polynomial SVM; sigmoid SVM; random forest classifier – RFC; and fully connected deep neural
network (five hidden layers) – FNN). The best results are for the FNN classifier using only the
inhibited MFDFA patterns for both facial and emotion stimuli oddball tasks.

informed consent. First, we apply a four-channel portable MUSE 2016 headband by InteraXon
Inc., Canada. It has been shown already that the MUSE device allows for a reliable EEG cap-
ture from preset AF7, AF8, TP9, and TP10 dry electrode locations. Each participant sits in a
chair in front of a computer display during the EEG experiments presenting short video stimuli
(5 ⇠ 7 seconds) with facial emotional expressions. We compare two short-term memory oddball
tasks with instructions given to the subjects to remember a face (di↵erent persons randomly pre-
sented in each run) and facial expressions (the same person presenting varying facial expressions
in each run). Next, we calculate multifractal detrended fluctuation analysis features (MFDFA) [1]
from 6 seconds post-stimulus intervals for both attended (oddball targets) and inhibited (oddball
distractors) stimuli. MFDFA feature distributions for all the analyzed EEG channels we sum-
marized in Figure 1. Finally, we classify the MFDFA patterns obtained from four EEG channels
using shallow and deep learning classifiers, as explained in the caption of Figure 2. We received
the best accuracy results for the FNN classifier trained in a ten-fold-cross-validation setting using
only the inhibited stimuli in the face- and emotional-expression-oddball experiments with me-
dian results above 80%, which suggested that the distractor inhibition EEG patterns did vary for
normal and MCI subjects.

The thriving utilization of AI/ML-based dementia onset prediction shall benefit aging societies
globally. However, we also acknowledge the inherent limitations of the presented strategy as we
only infer human-error-prone subjective cognitive evaluation measures rendered to binary MCI
thresholds at a level MoCA 6 25, which are only proxy indicators of dementia. Therefore, we
plan to continue this line of research by combining EEG and fNIRS-based measures for a broader
coverage for Alzheimer’s and vascular dementia biomarker development.
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vestibular neural models 
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The firing times of neurons produce a sequence of brief electrical pulses (action potentials) that can be 
regarded as a stochastic point process. In this report a well-cited model (Smith and Goldberg, 1986) for 
the firing times of the mammalian peripheral vestibular nerve is used to examine the effect of 
cumulative vs noncumulative afterhyperpolariztion on the serial dependence among the resultant spike 
train. A non-renewal point process is indicated at moderate to high firing rates in the case of cumulative 
afterhyperpolarization. The dependence is Markovian and is a function of the duration of the previous 
interspike interval. The modelling and biological consequences of this rate dependent serial dependence 
in the context of neural information processing in the vestibular system ( Linder et al., 2005; Rowe and 
Neiman, 2012;Sadeghi et al., 2007) and more general neural models (Kostal and Lansky, 2011; Tomar 
and Kostal, 2021) is explored. 

This integrate and fire model wih a constant threshold  in reduced form is given by 
 

𝑥(𝑡) = (𝑔𝑆𝑉𝑆+ 𝑔𝐾(𝑡)𝑉𝐾+ 𝑉𝑃 )
1+ 𝑔𝑆+ 𝑔𝐾(𝑡)  , 

 
Where x(t)  is the membrane voltage process referred to the resting level, which is set to zero. 𝑉𝑆  
and  𝑉𝐾 are positive (synaptic)  and negative (potassium) equilibrium potentials, respectively as indicate 
din the circuit below. The g’s are normalized membrane conductances (normalized by the leakage 
conductance) with the  𝑔𝐾(𝑡) being a decaying exponential  and 𝑔𝑆   being a shot noice process produced 
by passing a Poisson process through a finite impulse response filter of duration 0.5 msec.  
𝑉𝑃  being the postsynaptic current source.  

Cumulative afterhyperpolarization (AHP), which can make the firing times be non-renewal, is 
represented as follows: a fixed proportition, p, of the 𝑔𝐾 left over from the preceding activity was added 
to the 𝑔𝐾 triggered by each spike. If the  ( i)th interspike interval is 𝑡𝑖, the activity until the (i+1)th spike 
has a 𝑔𝐾(𝑡)   given by  

𝑔𝐾(𝑡) = [ 𝑔𝐾0 + 𝑝 𝑔𝐾(𝑡𝑖)]exp ( −
𝑡

𝜏𝐾
) 

So if p is not equal zero then the initial condition for 𝑔𝐾(𝑡)  is larger ( more hyperpolarizated) than 
when p=0.Said another rway, the dependence of the initial value on the length of the previous interval 
will make the firing time a 1-memory point process.  The 3 parameters (𝑔𝐾0 , 𝑔𝐾0, 𝑝) specify the 
AHP for a given neuron, The fourth parameter specific to each neuron is quantal epsp size, namely 
the mean value of 𝑔𝑆𝑉𝑆 at the resting potential.  We examine the cases of p=0 vs p=1 in three neurons 
with the other parameters as in Smith and Goldberg, 1986. The three neurons represent a regularly 
firing, intermediate variability and irregularly discharging fiber. The discharge rate of the neuron is 
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modulated by natural and electrical stimul;ation, which were mimicked  by varing the mean 𝑔𝑆 and 𝑉𝑃 
, respectively. The case with p=1 was used in Smith and Goldberg, 1986  and provided good 
agreement with experimental results using natural and electrical stimulation (Goldberg et al., 1984). 
 A moment plot the coef. of variation (CV) vs mean interspike interval (MI) is given below for 
the three model neurons. The solid curves (connected points) correspond to p=1 and the points 
correspond to p=0. The lower left corner of indicates the largest differences between p=0 and p=1. 
For more regularly discharging fibers the CV is larger for a given MI when p=0. Conditional mean 
plots and the values of the first order serial coerrlation coef. show that is region has a significant 
negative serial dependence. The second and third order correlation coef. are not significantly different 
than zero consistent with this being a first order Markov process.  
        The implications for neural information coding and what biological mechanisms downstream 
could take advantage of a reduced variablilty due to cumulative AHP are briefly examined.     
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The cell assembly hypothesis [1] postulates that neurons coordinate their activity through
the formation and repetitive co-activation of groups. While the classical theory of neural coding
revolves around the concept that information is encoded in neuronal firing rates, we assume that
assembly activity is expressed by the occurrence of spatio-temporal patterns (STPs) of spikes
emitted by neurons that are members of the assembly, e.g. activating a synfire chain.

We focus on a method that is capable of detecting significant STPs in parallel spike trains,
called SPADE [2, 3, 4]. SPADE first identifies repeating STPs using Frequent Itemset Mining [5],
and then evaluates the detected patterns for significance through comparison to patterns found
in surrogate data. Various surrogate techniques can be used to evaluate significance, and their
correct choice is crucial to ensure that by-chance patterns are not classified as significant [6].

Here we first evaluate how di↵erent six types of surrogate techniques a↵ect the results of
SPADE, in terms of the general statistics of the generated surrogates, and in terms of the amount
of false positives. We conclude that spike-train shifting [7] is the preferable choice for our type of
data, which typically show a CV < 1 and have a dead time after the spikes of 1.6/1.2ms induced
by the spike sorter (Plexon). Uniform dithering [8], in contrast, leads to a high false positive rate.

In a next step, we evaluate if cell assemblies are active in relation to motor behavior [2].
Therefore, we analyze 20 experimental sessions, each of about 15min recording, consisting of
parallel spike data recorded by a 10x10 electrode Utah array in the pre-/motor cortex of two
macaque monkeys performing a reach-to-grasp task [9, 10]. The monkeys have four possible
behavioral conditions of grasping and pulling an object consisting of combinations of two possible
grip types (precision or side grip) and two di↵erent amounts of force required to pull the object
(low or high). We segment each session into 6 behavioral epochs of 500ms duration and analyze
them independently for the occurrence of STPs. Each significant STP is identified by its neuron
composition, its number and times of occurrences and the delays between spikes.

We find that significant STPs indeed occur in all phases of the behavior. Their size ranges
between 2 and 6 neurons, and their maximal spatial extent is 60ms. The STPs are specific to
the behavioral context, i.e. within the di↵erent trial epochs and across conditions (di↵erent grip

⇤
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and force type combinations). This suggests that di↵erent assemblies are active in the context
of di↵erent behavior. Within a recording session, we typically find one neuron that is involved
in all STPs. The neurons involved in STPs within a session are not clustered on the Utah array,
but may be far apart. We further plan to investigate the spatial arrangement of the patterns
on the Utah array, to determine whether there are preferred spatial directions of pattern spike
sequences, as found in [2] for synchronous patterns. Finally, we plan to investigate whether the
grip type can be better decoded on the basis of the type of STPs or by using the firing rates of
the neurons.
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Modeling central auditory neurons in response to complex sounds not only helps understanding neural processing 
of speech signals but can also provide insights for biomimetics in neuro-engineering. While modeling responses 
of midbrain auditory neurons to frequency-modulated tones is rather good, modeling those to environmental 
sounds remains less satisfactory. Environmental sounds are typically characterized by the presence of strong 
energy components over a wide frequency range. The importance of such stimulus feature has not been examined 
in the conventional approach of auditory modeling that focuses on spectral selectivity. To this end, we 
manipulated the energy of two representative environmental sounds, both in power and in spectrum, to see how 
the responses of 25 rat auditory midbrain neurons would be affected in modeling. The environmental sound 
stimuli were those commonly present in a laboratory cage where a rat was either (a) drinking from a feeding bottle 
('drinking sound') or (b) chewing food pellets (‘eating sound’). The spectrum of each sound was first divided into 
multiple non-overlapping frequency bands before presented to an artificial neural model built on a committee 
machine with stratified parallel inputs to simulate the known tonotopic architecture of the auditory midbrain. The 
model was trained to predict empirical response probability profiles of neurons to the repeated environmental 
sounds. Results showed that the model performance depended more on the strong energy components than on the 
spectral selectivity as might be conventionally expected. Findings were discussed in relation to the broadband 
nature of environmental sounds, and the general sensitivity of midbrain auditory neurons to rapidly changing 
sound intensities. 
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In modern neuroscience, modeling and simulation of neuronal networks represent a powerful
means to combine insights from experiments and theory into a coherent understanding of brain
function. The only gauge to assess how much trust we can place in a given model is how well it
can predict the biological reality it aims to describe. Validation testing formalizes the comparison
between empirical data and the measures extracted from a model, e.g., using numeric simula-
tions, and quantifies their similarity [1, 2]. In a similar fashion, these validation tests can also
be used to directly compare two models, which can be beneficial in evaluating a model’s robust-
ness with respect to parameter variation, and in iteratively improving the model. Practically,
these comparisons require the extraction of characteristic measures from both the model and
experimental data, and statistical testing under the null hypothesis of equivalence. In particular,
validation tests that evaluate the similarity of spiking network activity can be based either on
single neuron measures (e.g., firing rate), pairwise measures (e.g., correlation), or higher-order
measures (e.g., graph centrality). Single neuron measures can be evaluated for similarity via stan-
dard two-sample testing of the corresponding distributions. However, due to their combinatorial
complexity, pairwise measures are much less straightforward to compare in a statistically rigorous
manner.

Here, I present a statistical test that evaluates the similarity of pairwise measures by testing
the angles between eigenvectors under the null hypothesis that the two networks don’t share any
distinct features that are reflected in theses measures. For correlation measures, such features
can, for example, be represented by correlated sub-groups of neurons. Pairwise measures, like
the Pearson correlation coe�cient, are typically arranged in an NxN matrix, where N is given
by the number of neurons. In the case of independent activity, this matrix can be described in
terms of random matrices. One characteristic of random matrices is that their eigenvectors are
randomly distributed, i.e. uniformly over the surface of an N -sphere [3]. The distribution of the
angles between such random vectors can be described by a power law of a sinusoid (sin(�)N�2)
[4].

The underlying idea of the proposed statistical test is that if there exists a su�ciently strong
deviation from the random matrix null hypothesis, as for example, in the form of a correlation in
a subset of neurons, this would cause an eigenvector to point into the direction of those neurons.

∗Acknowledgements: This project has received funding from the European Union’s Horizon 2020 Framework

Programme for Research and Innovation under Specific Grant Agreement No. 785907 (Human Brain Project SGA2)
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Initiative Networking and Fund under project number ZT-I-0003, and the Helmholtz School for Data Science in

Life, Earth and Energy (HDS-LEE).
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If such a correlated subset exists in both of the datasets entering the comparison, both would
have an eigenvector pointing into a similar direction, and thus the angle between them would
be small compared to the null distribution of random ”eigenangles”. According to this idea, the
proposed statistical test measures the angles between all eigenvector pairs and weights them with
the corresponding eigenvalues. Evaluating these angles under consideration of the null hypothesis
yields a cumulative probability measure of whether the two datasets share similar non-random
activity features.

Whereas the symmetric correlation matrices are suitable to characterize population activity,
the statistical evaluation of eigenangles can be further generalized and extended to asymmetric
measures, in particular connectivity matrices. While the eigenvector distribution of the con-
nectivity matrix depends on the details of the network architecture, for several cases of simple
networks the eigenvector and eigenvalue distributions can still be formally described. Moreover,
while the eigenvalue distribution of symmetric matrices can be analytically described by the
Marchenko-Pastur distribution [8], for the formal description of the eigenvalues of connectivity
matrices Rajan and Abbott [7] found an analytical expression for the eigenvalue distribution of
a certain set of networks, which can be leveraged here. Besides the application in a validation
context, in combination, these measures for symmetric and asymmetric matrices furthermore
provide the means to investigate quantitatively the relations between connectivity and activity.

Together with the theoretical basis of the statistical test, I demonstrate its capabilities and lim-
itations with respect to artificial stochastic calibration data and neural network simulations. This
work contributes to the e↵ort of building software packages for validation (see, e.g., NetworkUnit,
RRID:SCR 016543) to make modeling and simulation more quantitative and reproducible [5, 6].
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Identifying the underlying presynaptic input parameters, i.e., amplitude, duration and syn-

chronicity is required for determining the neural operational mode and for better understanding

of a neuron’s behavior. The general aim of this work is to propose a method of analyzing the

temporal structure of the neuron’s membrane potential and characterize the presynaptic input

that induced it.

The proposed method measures the variability of a filtered version VF (t,�t) of the membrane

potential V (t), using a filter that compares the potential at the time t with that at time t +�t
and t��t; VF (t,�t) = V (t)� (V (t��t)+V (t+�t))/2. This filtered version of the membrane

potential is sensitive to the correlation between signals at di↵erent temporal distances and for

small �t it is essentially a peak detector. The variability of the filtered membrane potential is

the standard deviation of VF over a given data time window.

We first investigated how the variability is a↵ected by the di↵erent features of the presynaptic

input, namely amplitude, frequency, duration (time to peak) and synchrony of individual events,

using simulated data. Each parameter was examined separately through simulations of uniformly

or randomly distributed alpha functions. For a series of isolated peaks of the simulated potential,

the variability was highest for filter time interval �t equal to the duration of the peaks. By

increasing the duration of the individual alpha functions, we noted a slower increase of variability

with a filter time interval. Moreover, for randomly timed peaks of constant rate, the variability

remained relatively at the same level after reaching a certain maximum value. There was also a

clear correlation between the height of the peaks and the variability.

We then applied our proposed method to experimental data. The experimental data used for

this work consisted of intracellular recordings from cats’ V1 simple cells, previously described in

[1]. Neurons were stimulated by monocularly presented drifting sine-wave gratings. According

to the push-pull architecture of the input to V1 simple cells, when a grating of optimal spatial

frequency and orientation is presented over the receptive field, the V1 cell receives alternately

strong excitatory and inhibitory input. This property allowed us to separately examine the e↵ects

of excitation and inhibition. We divided the postsynaptic membrane potential into two di↵erent

periods based on neuron’s resting potential: pre-spiking period, starting from the resting potential

until the first spike of each burst and inhibitory period, when the membrane potential is below

We would like to thank Professor Matteo Carandini (University College London, University of London, UK)
for kindly providing us the experimental data, without which this work would not have been possible.
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the resting potential. Part of the experimental data and the two periods are illustrated in Fig.

1 (Left). The results, shown in Fig. 1 (Right) with solid lines, suggest shorter duration and

higher amplitudes for Excitatory Postsynaptic Currents (EPSC) and longer duration and lower

amplitudes for Inhibitory Postsynaptic Currents (IPSC).

Based on these results we set the parameters of a simulation, to attempt to reproduce the

variability of real neurons. For the simulation we used a Leaky Integrate and Fire model (LIF),

with injected current as the sum of alpha functions, representing the individual presynaptic inputs.

The time of the alpha functions was determined by two Poisson processes, one for excitation and

one for inhibition, whose rates were modulated at the same frequency (4 Hz) as the presentation

of the stimulus gratings, and out of phase. The variability of the simulated data is shown in Fig.

1 (Right) with dashed lines.

We are currently further examining the e↵ects of input synchrony and the possibility of a

connection with the oscillations observed in the variability of the pre-spiking period of the real

neuron.

Figure 1: (Left) Membrane potential of a V1 simple cell, stimulated at the preferred orientation.

(Right) Variability of the experimental (solid lines) and simulated data (dashed lines). The

simulation consisted of a LIF model, with time constant of 12 msec. For simplicity we assume R =

1m⌦ and the postsynaptic currents (EPSC and IPSC) generated by input spikes were simulated

as a sum of alpha functions with amplitudes in units of mV. Excitatory inputs are Poisson

spike trains with a maximum rate of 750 Hz that trigger individual alpha currents (EPSC) with

amplitude A = 10mV and time to peak of TTP = 1.4msec. Inhibitory inputs have a maximum

rate of 100 Hz and trigger alpha functions with amplitude of A = �5mV and TTP = 2msec.
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Neurons calculate their response to their stimulus at di↵erent time scales. If a neuron is sen-

sitive to stimulus spikes that arrive at the expected stimulus rate, and responds with a response

rate that is related to the stimulus rate, it temporally integrates. If a neuron is sensitive only to

stimulus spikes that arrive in rapid succession, faster than the average stimulus rate, its opera-

tional mode has been called coincidence detection. Investigating the level of coincidence detection

independently from other neural features is important in understanding neural coding, however,

setting up neuron models to spike in a predefined way is not straightforward. We recently pro-

posed a two-dimensional measure that quantifies whether a neuron is doing coincidence detection

or integration – a value called the Neural Mode, and that quantifies the amount of excitation or

inhibition – a value called the Neural Drive [1]. (Figure 1a shows an overview.) The Neural Mode

can be measured easily, but obtaining it analytically is di�cult with current neuron models.

In the workshop we would like to propose, explain, and demonstrate a new spiking neuron

model – the Di↵erence Neuron – that responds to its stimulus according to a predefined value

of the Neural Mode. The amount of integration or coincidence detection is no result of complex

property relations, but a parameter of the model.

The neuron uses the Neural Mode and Neural Drive as input space. Simple “Di↵erence

Detectors” notice whether stimulus is inside a rectangular receptive field in the Neural Mode and

Drive plane. (Figure 1b shows receptive fields.)

We compare the Di↵erence Neuron to a conductance-based leaky Integrate-and-Fire Neuron.

While changing from a of sub-threshold to super-threshold regime, the Di↵erence Neuron repro-

duces the general trend of mean, variance, coincidence detection, and temporal integration of the

leaky Integrate-and-Fire Neuron. (Figure 1c shows a sample spike train.)

We investigate the behaviour of sparsely connected networks of Di↵erence Neurons. In two

di↵erent setups, they show low-response states, oscillatory states, and high activity chaotic states.

Using dedicated receptive fields for temporal integration and for coincidence detection, we can

influence and measure the values of coincidence detection and integration within a network sep-

arately. (Figure 1d shows network activity.)
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Figure 1: The Di↵erence Neuron
(a) The two-dimensional Neural Mode and Drive quantifies a relation between stimulus and response spike
trains. The X axis shows the Neural Drive, inhibition on the left (-1), excitation on the right (+1), the Y
axis shows the Neural Mode, gap detection at the bottom (-1), integration near 0, coincidence detection at
the top (+1). (b) Receptive fields within the Neural Mode and Drive plane form a Di↵erence Neuron’s input.
(c) Sample response of a Di↵erence Neuron (top, green, labelled “Learner Neuron”), receptive field activity
(middle), and membrane potential of a leaky Integrate-and-Fire neuron (bottom, purple, labelled “Trainer
Neuron”), both receiving the same stimulus. (d) Amount of coincidence detection, integration, and inhibition
in a simulated network of Di↵erence Neurons.
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The Wilson-Cowan model of a neural mean field is derived from populations of interacting
spiking excitatory (E) and inhibitory (I) neurons. A linearization of this and related neural field
models around a stable fixed point forms a damped neural circuit that models an elementary
perpetual circuit when combined with a small noise. This basic stochastic quasi-oscillator has a
remarkable stability property: The di↵erence of the associated E and I phases and the ratio of
their envelopes are narrowly distributed around computable constants despite the noise that keeps
the oscillator ‘alive.’ This stability property enables us to build stable stochastic neural structures
that share observed properties of a variety of brain areas, including interactions between brain
areas, e.g., the cortical-pulvinar system. As an example of how the latter can be accomplished,
we analyse the results of a recent paper by Quax et al. [1] and replace their spiking neural
network model of cortical populations that receive sine wave alpha-frequency ‘pulvinar’ input
with a stochastic neural field model for both cortical and pulvinar activity.

The linear quasi-cycle oscillators are described in detail in [2] based on a model of [3]:

dV = �AVdt+ NdW (1)

where

V =

✓
VE(t)
VI(t)

◆
, A =

✓
(1� SEE)/⌧E SEI/⌧E

�SIE/⌧I (1 + SII)/⌧I

◆
, N =

✓
�E 0
0 �I

◆
, dW =

✓
dWE(t)
dWI(t).

◆

(2)
This model is a description of the time evolution of the local field potentials (LFPs) of two coupled
populations of neurons, excitatory, VE(t), and inhibitory, VI(t). The parameters in A represent
the synaptic coupling strengths between the excitatory and inhibitory neuron populations, �i are
the noise strengths, and Wi are standard Wiener noise processes. In previous work (see [4] for a
summary) we derived the phase and envelope relationships of the E and I processes [2], showed
that Kuramoto-coupled quasi-cycle oscillators behaved similarly to ordinary phase oscillators, dis-
played the e↵ects of spatially-correlated noise on spatial patterns formed by Mexican-hat-coupled
(MHC) populations of quasi-cycle oscillators, demonstrated that spatial phase patterns form with
weaker MHC than do amplitude patterns, and showed that amplitudes of MHC populations can
be controlled by an adaptive inhibitory mechanism while still permitting spatial patterns in the
phases.

⇤
Funded by a grant from NSERC of Canada to LMW.
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The paper by Quax et al. [1] describes two separate interacting populations of cortical excita-
tory (E) and inhibitory (I) Izhikevich spiking neuron models that receive (noisy) alpha-frequency
(10 Hz) sine wave input from a putative pulvinar (nucleus of the thalamus) source. The cortical
populations generate gamma-frequency (30-50 Hz) oscillations by a PING mechanism in which
the E neurons excite the I neurons, which in turn inhibit the E neurons, turning down their own
excitation, reducing their inhibition of the E neurons, etc. The two cortical I-neuron populations
receive the 10-Hz input with a variable phase delay ��. Input of 10 Hz sine waves into I popu-
lations results in modulation of gamma oscillations at alpha rate in the E populations. Notably,
phase coherence between the two alpha-modulated (via I populations connected only to their
local E population), one-way feedforward connected, E populations occurs at a specific phase
o↵set (�� ⇡ �⇡/2) of the respective two 10 Hz inputs. Consistent with the coherence theory of
neural communication [5], signal transmission between the two connected E populations also is
most e↵ective at the optimal �� for coherence. These e↵ects seem biologically plausible, and are
a reasonable model for the e↵ects of attention on perception of visual signals.

We first show, in a Lemma, that the main result of Quax et al., a maximum of E-neuron
gamma-frequency phase coherence at a specific value of ��, arises from a mathematical interac-
tion of alpha- and gamma-frequency sine waves, rather than from specific characteristics of the
spiking neuron models. The maximum E-population phase coherence occurs when �� matches
the phase o↵set between them. The feedforward connection between the two E-neuron popula-
tions is part of the dynamics that causes a phase di↵erence of ⇠ �⇡/2 between them. This is not
mentioned by Quax et al. We then substitute EI Equation 1 neural mean field models for the
cortical E and I Izhikevich spiking neuron populations in the Quax et al. paper, but still with
sinusoidal 10 Hz input to the I processes. In this dimension-reduced formulation, we demonstrate,
using simulations, the Quax et al. results pertaining to coherence and signal e↵ects. Finally, we
substitute EI Equation 1 neural mean field models for the two, o↵set, 10 Hz sine waves as well,
and again using simulations, we demonstrate the Quax et al. coherence and signal e↵ects using
only the quasi-cycle models. Thus, control of cortical gamma phase coherence via alpha phase
modulation of the pulvinar can be accomplished in a reduced-dimension, linearized, neural mean
field approach.
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A Mesoscopic Characterization of Sequential Movement 
related Neuro-motor States in Premotor and Motor Cortices: 
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Movement parameters have been decoded from spikes and local field potentials (LFPs), recorded from the primate 
motor cortices during movement planning and execution1,2. However, the potential of LFPs to provide network-
like, distributed characterizations of neural dynamics during the planning and execution of sequential movement 
tasks remains to be fully understood. Is the aggregate nature of LFPs suitable to construct informative brain state 
descriptors of movement preparation and execution that characterize the topological and frequential coding of 
different aspects of behaviour? To investigate this, we developed a computational framework for the analysis of 
LFPs based on machine learning classifiers and analysed a set of LFP-ensemble neural dynamics from a primate, 
implanted with several microelectrode arrays in pre-motor and motor cortical areas of both hemispheres. The 
primate performed a reach and grasp task, consisting of five consecutive states, starting from rest until a rewarding 
target (food) was attained. We use this five-state task to characterize brain activity and connectivity within eight 
frequency bands, using electrode power and pair-wise correlations across electrodes as features.  Our results show 
that we could best distinguish all five movement-related states using the highest frequency band (200-500Hz), 
yielding a 87% accuracy with electrode power, and 60% with pair-wise electrode correlation. The accuracy 
decreased with frequency band. Further analyses characterized each movement-related brain state, showing 
differential neuronal population activity at above-gamma frequencies during the various stages of movement 
preparation and execution. Furthermore, the brain topological distribution for the high-frequency LFPs allowed 
for a highly significant set of pair-wise correlations, strongly suggesting a concerted distribution of movement 
planning and execution function is distributed across pre-motor and motor cortices in a specific fashion, and is 
most significant in the low ripple (100-150Hz), high ripple (150-200Hz) and multi-unit frequency bands. In 
summary, our results show that the concerted use of novel machine-learning techniques with coarse grained queue 
broad signals such as LFPs may be successfully used to track and decode fine reach and grasp movement aspects 
across several brain regions. 
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Amblypygids (whip spiders) are nocturnal predators that rely on touch and chemosensation when 
navigating in the dark. In whip spiders, the first pair of legs is transformed into long sensory organs 
(antenniform legs) covered with many thousands of mechanosensory, olfactory, and gustatory 
sensilla, but very little is known about olfactory processing in their central nervous system (*). 
Here, we neuroanatomically describe the Amblypygid olfactory pathways. Olfactory neurons from 
the sensilla on the antenniform legs terminate in the first leg neuromere on ca. 460 primary 
olfactory glomeruli, a very high number for arthropods, suggesting advanced olfactory capabilities. 
Olfactory projection neurons send their afferents from the olfactory glomeruli to the brain where 
they terminate on a set of large secondary olfactory glomeruli, located in the mushroom body 
calyx. The mushroom body calyx also comprises a set of much smaller glomeruli that receive 
visual input, establishing the multimodal nature of the mushroom body. Both, primary and 
secondary olfactory glomeruli exhibit a high level of anti-GABA staining, indicating that inhibition 
plays an essential role in odor processing of amblypygids. In contrast, the small visual mushroom 
body glomeruli are not modulated by GABA input. Using various neuroanatomical techniques, we 
describe the amblypygid olfactory circuits and compare them with the olfactory system in other 
arthropods. 

*Sinakevitch I, Skye M Long, Gronenberg W (2020) The central nervous system of whip spiders 
(Amblypygi): Large mushroom bodies receive olfactory and visual input. J Comp Neurol. 
1– 17. https://doi.org/10.1002/cne.25045 
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MECHANISMS OF FUNCTIONING OF CONNECTOMES EACH OF WHICH 
INCLUDES THE NEOCORTEX, HIPPOCAMPUS, BASAL GANGLA, CEREBELLUM 

AND THALAMUS 
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We suggest possible mechanisms of interdependent functioning of different structures in a 
connectome that includes the neocortex, hippocampus, basal ganglia, cerebellum and thalamus. 
These mechanisms are based on previously formulated unitary modification and modulation rules 
for the efficacy of synaptic transmission between neurons of different types. Using these rules we 
proposed possible mechanisms of functioning of such parts of a connectome as the hippocampal 
formation, cerebellum and cortico – basal ganglia – thalamocortical neural loop [1-6]. These 
mechanisms differ from the generally accepted ones, but the predictions of our models have now 
received experimental verification. We took into account recent morphological and 
electrophysiological data on interconnections between mentioned structures that are schematically 
shown in the Fig. The cerebellum affects the neocortex and basal ganglia through the thalamic 
nuclei. It also influences the hippocampus through the thalamic nucleus reuniens, retrosplenial and 
prefrontal cortical areas, medial septum, and supramammillary nucleus. The hippocampus affects 
the functioning of the cerebellum through the neocortex and pontine nuclei, as well as through the 
basal ganglia, which output nuclei send GABAergic projections to the subthalamic nucleus and 
the pedunculopontine nucleus. The basal ganglia, cerebellum, and subthalamic nucleus affect 
motor activity through the red nucleus. Based on the data on the topographic organization of 
connections between structures, we proposed that the brain can be considered as a global 
connectome consisting of separate, similarly organized connectomes. Each of these connectomes 
includes one neocortical area reciprocally connected with one thalamic nucleus, as well as the 
corresponding areas of the basal ganglia, subthalamic nucleus, and deep cerebellar nucleus. 
Dopamine released in response to sensory stimuli and reinforcement modulates the efficacy of 
synaptic transmission in different structures of a connectome thus determining processing of 
sensory stimuli of one modality. The mechanisms of signal processing are similar in every 
connectomes. Therefore, the knowledge of mechanisms of functioning of an individual 
connectome allows understand mechanisms of functioning of the global connectome that provides 
the processing of multimodal sensory information, its perception and selection of required 
reaction. Comparison of the mechanisms of functioning of the connectome in normal and 
pathological conditions should make it possible to evaluate existing methods of treating 
neurological diseases and facilitate targeted search for new methods of treatment. 
Key words: connectome, neocortex, hippocampus, cerebellum, basal ganglia, synaptic plasticity, 
dopamine. 
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cerebellar neural network. Biosystems. 2000. 54(): 141-149. 
3. Silkis I. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. 
Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways 
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6. Silkis I.G. Mechanisms of the interdependent influences of the prefrontal cortex, hippocampus, 
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Fig. Topographic organization of neural circuits in the global connectome, consisting of 
connectomes that are involved in the processing of motor, sensory and limbic information. Each 
connectome includes a neocortical area reciprocally connected with the thalamic nucleus, as well 
as the corresponding regions of the cerebellum, basal ganglia, subthalamic nucleus, and pontine 
nucleus. Cortical areas: Mot. C, motor; Sens. C, sensory; PfC, prefrontal; RSC, retrosplenial; EC, 
entorhinal. Parts of the basal ganglia: BGd, BGa, BGv, dorsal, associative and ventral, 
respectively. Thalamic nuclei: VL ventrolateral; LGB, lateral geniculate body; MGB, medial 
geniculate body; MD, mediodorsal; LD, laterodorsal. SMN, supramammillary nucleus; MS, 
medial septum; STN, subthalamic nucleus; PPN, pedunculopontine nucleus; PN, pontine nuclei; 
RN, red nucleus; IC and SC, inferior and superior colliculus, respectively; SNc, substantia nigra 
pars compacta; VTA, ventral tegmental area; DA, dopamine. Lines ending with arrows and 
rhombuses, excitatory and inhibitory inputs, respectively. 
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Phase coupling in interaction networks of neural mass
models of cortical columns
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Experimental evidence along many years demonstrated the ubiquitous presence of rhythms
and oscillatory neural activities at various levels of the mammalian brain. Local field potentials
produced by the synchronized activity of large assemblies of neurons propagate through highly
dynamic oscillatory waves. A careful balance of excitation and inhibition maintains the neural
circuits within proper operational ranges. In this study, we use a neural mass model of cortical
columns based on stochastic Jansen-Rit equations to study the functional connectivity within a
network of cortical macrocolumns operating in a partially synchronized irregular regime. Here
we focus on a heterogeneous topology network, with few nodes acting as hubs while the rest
are relatively poorly connected. We aim at presenting a numerical method to infer quadratic
phase coupling (QPC) from stationary time series by estimating cross-bicoherence among them
in a non-parametric manner. Our results show that our method e�ciently detects QPC under
various parameter settings, including increasing levels of background noise. We suggest that the
neuromodulatory inputs controlling the excitability in cortical columns combined with the local
excitatory/inhibitory balance may contribute to set a fine tuning and gating of the information
throughout the cortex. Following these results, we discuss the possibility that higher order brain
rhythms determined by QPC may represent an important mechanism for the transmission of
complex temporal information.
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Dynamics of brain activity in multisite recordings

from behaving parvalbumin deficient mice (PVKO)
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(1) Neuroheuristic Research Group, University of Lausanne, Switzerland

(2) Division of Neurosciences, Pablo de Olavide University, Sevilla, Spain

High-frequency oscillations in the ranges of the �- and �-frequency bands (30-80 Hz) have
been suggested to represent a fundamental mechanism of information processing in the forebrain.
Almost half of all GABAergic interneurons in the brain express the cytosolic Ca2+-binding protein
parvalbumin (PV) and recent findings have further demonstrated the key role of hippocampal
PV neurons in experience regulated adult learning. PV-deficient mice (PVKO) have been shown
to develop highly coherent oscillatory activity. This study reports that PVKO mice present
significant deficits in the acquisition of an operant behavioral task, although some individuals
may reach a level of performance similar to wild-type mice with a delayed and altered dynamics
of learning. We performed multisite recordings of local field potentials (LFPs) and multiple
single activity in the basal ganglia-thalamocortical circuit. Our recordings showed that in nucleus
accumbens the spectral power at all frequency bands tended to increase in WT and to decrease
in PVKO, during the interval when mice moved towards the lever, from the first to the last
session. Spectral power of LFPs in �- and �-frequency bands decreased significantly also in the
hippocampus and prefrontal cortex of PVKO compared with WT mice. We observed also a
decreased oscillatory activity, as well as less synchronized activity between nucleus accumbens
and the prefrontal cortex of PVKO while the mice were freely-roaming. We confirm our previous
studies that PV is necessary for a correct signaling during instrumental learning associated with
the recognition of natural rewards.
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Operant conditioning deficits and modified local field potential activities in parvalbumin-
deficient mice. Scientific Reports, 11(1):2970, 2021.

[3] B. Schwaller B., I.V. Tetko, P. Tandon, D.C. Silveira, M. Vreugdenhil, T. Henzi, M.-C. Potier,
M.R. Celio and A.E.P. Villa. Parvalbumin deficiency a↵ects network properties resulting in
increased susceptibility to epileptic seizures. Molecular and Cellular Neuroscience, 25:650–
663, 2004.

1

Prof. Michael Stiber
Paper 33



Brain activity associated with personality traits and
behavioral strategies revealed by unsupervised

analysis of EEG Signal
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In the last decades, the nature of human fairness has been investigated by the Ultimatum
Game (UG), a common experimental task in neuroeconomics involving two players. The Proposer
is the player who o↵ers how to share an endowment in two parts, and the Responder is the
opponent player who can either accept the o↵er, (and share it accordingly) or to reject it with
both players receiving a zero payo↵. The recording of brain activity during UG has become one
of the most common experimental tasks aimed at studying the decision-making process, being
considered to be the most qualifying phase of the expression of will. To better understand what’s
going on in our brains while we take a decision, here we present an approach aimed at extracting
features of brain activity in a completely unsupervised way. Patterns of brain activity can be
associated with specific personality trait, assessed by standardaized psychological questionnaires
(HEXACO), and behavioral response during an iterated UG (where both players take the role
of Proposer and Responder over a long series of runs). Our study revealed di↵erent types of
fairness tested against willingness-to-share because the players could be clusterized into specify
groups characterized by common features in EEG patterns, personality traits and behavior. This
approach is likely to open the way to new studies of the neural basis of where and how a “decision”
is taken in the brain.
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A non-monotone bootstrap percolation model of
neuronal activity⇤
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We consider a model for propagation of electrical impulses, i.e., “activity” in a neuronal
network. The neurons are assumed to be placed at the vertices of a square lattice whose edges
represent the synaptic connections. Let G = (V,E) denote the graph induced by the edges of the
lattice Z2 on the set of vertices V ✓ Z2. The set of vertices V is partitioned into two subsets
V = V + [ V �, corresponding to two types of neurons: excitatory, V + and inhibitory, V �. To
keep the empirical ratio 4 between the cardinalities |V +| and |V �| we place the inhibitory neurons
at the nodes

V � = {(x, y) : x, y both even}.

The state of a neuron Xv(t) at a vertex v 2 V at time t � 0 can either be active, which is
Xv(t) = 1, or non-active, which is Xv(t) = 0.

Let A0 be a set of initially active vertices, A0 = A+
0 [ A�

0 , where A±
0 ⇢ V ±. Then, for any

t � 0 given At = A+
t [A�

t define the active neighbours of a vertex v 2 V by

N±
t (v) = {u 2 A±

t : (u, v) 2 E}

and then set
At+1 = {v 2 V : |N+

t (v)|� |N�
t (v)| � 1}.

Hence, a neuron is active at time t + 1 if and only if at time t it has more excitatory active
neighbours than inhibitory active ones, no matter its own type. This dynamics of propagation of
the initial activity captures features of the “integrate-and-fire” model and is also within a wide
class of cellula automata ([1]). Mathematically rigorous theory, however, it is still much limited
to the case of monotone dynamics only, i.e., without inbitory units (e.g., [2]).

We suggest a novel approach to analyse the complex behaviour of the model. We first study
the trajectories of activation of a single neuron, as independent dynamical systems, and then
view a general case as their interaction. This enables us to derive the asymptotic behaviour of
the set At as t ! 1 depending on the initial activation set A0. Both the total activation |At| as
well as the patterns of activity depend in a complex non-monotone way on the size of the initial
activation, and moreover are highly sensitive to its configuration.

The marginal cases of (i) sparse and (ii) dense finite initial activation sets A0 ✓ [�k, k]2,
k � 1, are studied in detail.

We describe that locally the process of activation on a finite set is periodic and we find its
periods.

⇤This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.
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We provide su�cient conditions for the infinite growth of activation, which in our model can
be at most linear. We also find the initial configurations A0 such that |A(t)| is uniformly bounded
for all t.

We show that for some initial configurations of A0 the set of active cites remains to have a
constant size while the location of the active set is moving across the network, constituting a
moving front or a wave.

Our results show that the network has a very rich behaviour. It is natural to interpret the
limiting cycles as memorized patterns. Furthermore, for some of the limiting patterns we find
basins of attraction, i.e., the sets of initial configurations leading to a given dynamical limit,
which is an important issue in learning and coding.
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