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A major challenge with Search and Rescue operations is covering a large amount of area
quickly, efficiently, and accurately. With the rising prevalence of both computer vision algo-
rithms for object detection and small Unmanned Aerial Systems (sUAS), an effective solution
emerges. This work proposes a methodology for the integration of a sUAS, sensors, and soft-
ware into a search and rescue workflow. Compared to ground search and rescue operations,
sUAS allow for larger and faster area coverage at a fraction of the cost of manned aircraft mis-
sions. When combined with a versatile suite of object detection algorithms incorporating aerial
data from both the visual and radiometric spectrum, the proposed system is able to analyze
and process real-time data faster than existing systems at greater or comparable accuracy.

I. Introduction

A. Problem Statement

Search and rescue operation expenses are overwhelmingly dominated by personnel costs—a two-day Wilderness
Search and Rescue (WiSAR) operation by the Chelan County Sheriffs Office (CCSO) in Enchantments, Washington

saw $8,765.30 in personnel costs from just a $10,717.90 total (Section VII.D). Due to large areas and potentially rugged
terrain, camera-equipped small unmanned aerial systems (sUAS) have emerged as a cheap and robust alternatives [1].
Able to rapidly provide near-ground imagery, sUAS operate several times faster than conventional methods—however,
existing workflows involving manual extraction of visual information by human overseers are fallible to operator error
and cognitive fatigue [2, 3]. As a result, such approaches often rely on redundancy provided by the use of multiple
operators, heavily inflating expenditures [4]. In this paper, we suggest that a machine-learning based approach offers an
effective solution, and introduce novel workflows for integrating a camera-equipped sUAS with Computer Vision (CV)
algorithms for analyzing live aerial imagery. In particular, we will demonstrate:

1) the effective application of object detection frameworks (e.g. [5]) to aerial imagery using our custom-built dataset
2) successful integration of radiometric data streams and image processing algorithms to enhance detection

performance
3) adaptability to a wide variety of wilderness environments and conditions

II. Literature Review

A. Previous Work at the University of Washington
Previous work done at the Autonomous Flight Systems Laboratory (AFSL) has focused on developing a variety of

sUAS integrated systems, focusing in particular on aerial mapping [6, 7] and surveying [8, 9]. Of specific interest is
the exhaustive search algorithm presented by Lum, Vagners, and Rysdyk [10, 11] which has potential applications in
WiSAR sUAS as a basis for intelligent path planning and a scalable multi-agent architecture.
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B. Related Works
Title 14, Aeronautics and Space §107.19 [12] requires a Pilot in Command (PIC) to be present for non-recreational

operation of sUAS in the United States. As the primary purpose of the PIC is the monitoring of sUAS operations, a
secondary operator is often used to monitor payloads that require constant observation, such as live video feeds from
Search and Rescue (SAR) payloads [13]. An overview by Adams et al. addressed how human operators interact with
sUAS and how sUAS can be integrated into the WiSAR workflow. The overview further identified multiple models of
differing implementations of the sUAS to show what an sUAS enabled WiSAR operation would look like. A 2008
study by Goodrich et al. demonstrated this methodology. A fixed-wing sUAS equipped with a video camera is used to
address “the need to effectively present video information” and “the need to coordinate the UAV with ground searchers”
in WiSAR operations. A CV algorithm described in [15] was used to extract features in real time.

With the rise of sUAS popularity in SAR operations, payload options have also seen an increase in performance
and decrease in size. Thermal sensors have proven to be effective at identifying humans [16] but are limited in their
resolution when compared to their visual counter-parts. A study done by de Oliveira and Wehrmeister in 2018 [17]
focused on the use of low-cost equipment, specifically a Raspicam with a resolution of 2592 × 1944 pixels and a FLIR
Lepton Long Wave Infrared sensor with a resolution of 80 × 60 pixels, for human identification via deep learning. For
WiSAR applications, high resolution visual and thermal sensors are advantageous in that they allows sUAS to fly at
higher altitudes, therefore getting more area in frame while maintaining the same number of pixels per human [1].
Multiple manufacturers such as FLIR and Workswell now offer options catered specifically to sUAS integrated SAR
operations that have both a visual and thermal sensors in the same unit [18, 19].

Object detection is a main area of CV with diverse applications. For WiSAR, we are trying to detect human subjects
to aid in rescue tasks. Within the detection procedure, feature extraction and classifiers play important roles, and
selecting the right features gives more efficient and accurate detection, since features usually encode knowledge on
objects, which are difficult to learn from a raw finite set of input pixels [20]. Wavelets, such as those proposed by
Haar, have been shown to be very useful in extracting features [20]. Similarly, Convolutional Neural Networks (CNNs)
are also used to extract features from images as seen in [21]. With the development of CNNs, such high-dimensional
features can be extracted and reduced to low-dimensional features [22]. However, training a CNN with a large number
of parameters requires a large dataset [23] to optimize the process. Advances in GPU hardware make it possible for such
models relying on CNN architecture to perform well [24]. Numerous research efforts have shown promising results of
human detection using visual or thermal image input from a sUAS view [25–27]. To use more information, researchers
also incorporate thermal and visual inputs [17, 28, 29]. Our research efforts are similarly directed towards combining
thermal and visual information to increase detection accuracy and robustness to non-ideal environments.

III. UWWiSAR Dataset

A. Dataset Acquisition
The UWWiSAR dataset includes over 30,000 visual and 5,500 thermal images taken by aerial sUAS over wilderness

environments containing human subjects. The dataset was created with an emphasis on encompassing a wide variety of
terrain, times of day, angles, and altitudes ranging from 6 m to 120 m. Example images from the dataset are shown in
Fig. 1.

To prepare the dataset, human subjects within collected images were annotated using the YoloMark software [30].
While largely done by hand, the tool’s object tracking features were utilized to reduce the time and manpower necessary
to annotate the large dataset. To supplement our data, we used 770 of the more rural images from the VisDrone
dataset [31, 32]. These include upwards of 15 human subjects per image whereas our images only had between 1 and 4
human subjects. One of the limitations of this dataset is that we rarely encountered wild animals that we could use as
true negative examples during training, which would help to avoid potentially identifying wildlife as humans. In order
to compensate, we explicitly added examples of humans walking with dogs.

B. Dataset Training

1. Pre-Training
For training, we used the method described in [33]. Because our algorithms also run detections on tiled images

during inference, it is beneficial to train our models on tiles of the same size. As a result, visual images were split into
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Fig. 1 Images from UWWiSAR dataset.

Table 1 Number of images in UWWiSAR Dataset

Dataset Pre-Culled Training set Test set

Visual 211,228 27,435 3,026
Thermal 8,896 5,255 564

512 × 512 tiles (see Fig. 2). As the majority of images in our dataset contain only a small number of human subjects,
the vast majority of these tiles were devoid of detections—roughly 85% of these non-salient tiles were culled from the
dataset to reduce training time. By contrast, because radiometric data is already sufficiently low resolution 640 × 512
for direct inference, the model was trained on without further processing. For both thermal and visual data, the dataset
was then split in approximately a 9:1 ratio, with the majority going into the training set and the remaining minority
going into the test set as seen in Table 1.

Fig. 2 Tiling Method.
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2. Dataset Augmentation
In order to increase the variability of the dataset, YOLOv5 performs augmentation on the training and test sets,

varying hue, saturation, value, rotation, translation, scale, and other parameters to decrease propensity for over-fitting.
The batch shown in Fig. 3 demonstrates these augmentations. Bochkovskiy, Wang, and Liao detail this process more
thoroughly in [34].

Fig. 3 Annotated Training Batch from UWWiSAR dataset.

IV. System Architecture

A. Overall System Architecture
The system is comprised of two main subsystems: an aerial unit and a ground unit. The aerial unit is an sUAS

housing a radiometric and visual sensor package as well as a 5.8 GHz video transmission system providing live imagery
to the ground unit. The ground unit is comprised of three main elements: the Remote Pilot in Command, an emergency
response team, and a data processing unit which analyzes incoming data. In the event of a positive detection, Global
Navigation Satellite System (GNSS) data is provided to the emergency response team from the aerial unit for further
action.
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Fig. 4 System Architecture.

B. Software Architecture
A major challenge with object detection is balancing between computational efficiency and an acceptable accuracy

threshold. Building upon the work of Benezeth et al., we will introduce two potential approaches to human detection
incorporating radiometric data. The first is a two-pass system where data with low radiometric activity is culled before
being fed into a conventional visual detector, decreasing computational workload. The second is a model trained on
a statistical transform of the radiometric data itself, which offers substantial improvements in accuracy compared to
training directly on the radiometric data.

1. Radiometric Culling
Running YOLO on a full-resolution image is impractical (further discussed in [33]). This challenge is what motivated

the concept of radiometric culling.
We begin with the same basic algorithm presented in Section II of [35], assuming that radiometric background can

be accurately modeled with a single Gaussian distribution, defined as [35]:

`C (G, H) = (1 − U)fC−1 (G, H) + U�C (G, H) (1)
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f2
C (G, H) = (1 − U)fC−1 (G, H) + U(�C (G, H) − `C (G, H))2 (2)

Where �C (G, H) represents the radiometric intensity of a pixel at time C, `C (G, H) at (G, H) pixel coordinates, and fC (G, H)
are the per-pixel mean and standard deviation of the Gaussian background respectively, and U is a linear interpolation
parameter which we set to 0.001 from empirical observation. For C = 0, we set f and ` to the actual mean and standard
deviation of the radiometric data for all pixels. After that, the mean and standard deviation of each pixel are updated
while taking into account previous frames using Equations 1 and 2. At any given time, we compute the per-pixel
standard score:

IC (G, H) =
�C (G, H) − `C (G, H)

fC (G, H)
(3)

And then, as proposed by [35], binarize each pixel as follows:

�C (G, H) =
{

1 if IC (G, H) > g ∧ �C (G, H) > V
0 otherwise

(4)

Where V represents a minimum temperature threshold. g is the number of standard deviations above the Gaussian
background a pixel must be to be classified as salient. Again, based on empirical observation we set g = 2.5 (the same
as what [35] recommends). While this technique is effective, running it on field data yields noisy binarized images. To
combat this, we run a morphological transform on the image, applying an opening operation using a 4 × 4 elliptical
kernel, removing small bright spots [36]. The result is a set of coordinates corresponding to peaks of radiometric
activity (Fig. 5)

(a) Input FLIR image in ideal conditions with one person. (b) Peaks found relative to Gaussian background (shown in red
on top of the original image shown in (a)).

Fig. 5 Radiometric peak detections.

As in pre-training, we subdivide the image into = × = rectangular tiles—we then apply a linear transform on the
coordinates to convert them to the same space as the visual data, then cull any tile without a peak. The remaining tiles
are then fed into the YOLO object detection system running our trained model. Since inference is computationally
intensive, and the initial low-pass filter is cheap in comparison, this drastically decreases the computational load needed
to run a model without downscaling. In ideal conditions with low radiometric background, this reduces the total number
of pixels that inference is run on to a fraction of what it otherwise would be (Fig. 6).
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Fig. 6 Radiometric culling (active tiles shown in orange).

2. Gaussian-Background Transform
While YOLO and similar object detection frameworks operate on a per-frame basis, considering each image in

isolation, it is oftentimes desirable to also consider frames relative to each other. Instead of simply training on a model
on raw radiometric data, here we propose both training and inference on a transform of the data using the same Gaussian
model as above. Because this transformation indirectly encodes not only the brightness of pixels, but the brightness of
pixels relative to the aggregate brightness of past pixels, this effectively makes our model context-sensitive.

First, we compute a scaling factor (C (G, H) by mapping IC (G, H), defined the same as above, to the range [0, 1] via a
sigmoid:

(C (G, H) =
1

1 + 4−: (IC (G,H)−I0)
(5)

Where : and I0 are constants which represent the logistic curve’s steepness and midpoint, respectively. Based on
empirical testing, we let : = 2.5 and I0 = 2 for good results.

Fig. 7 The logistic scaling function.
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Fig. 8 Gaussian-Background HSV transformed images (transformed3). Ideal conditions can be seen on the left, and less
ideal conditions on the right.

For each pixel in the radiometric image, we now multiply its raw radiometric value by the value of the scaling factor
at that point—informally, we are decreasing the intensities of pixels which have not become substantially brighter,
assuming that a person is substantially warmer than their surrounding environment. To increase contrast within the
image, we apply a min–max normalization:

�C= (G, H) =
�C (G, H) − �min
�max − �min

(6)

Finally, we translate the normalized intensity values into an HSV image based on the following criterion:
� (G, H) = (1 − �C= (G, H)) 240°
((G, H) = 1
+ (G, H) = 1

(7)

Where � (G, H), ((G, H), and + (G, H) represent hue, saturation, and value respectively. We map the intensity along the
hue from 240° (blue) to 0° (red), while fixing saturation and value at 100%. We avoid using all 360° of hue, because that
would make very high values and very low values similar in color. One advantage of this HSV mapping over greyscale
is that it offers 4 times more granularity, with 1020 possible values over 240° as opposed to 255 possible values.

The final output of this transform can be seen in Fig. 8. In the results presented in Section V, this transform is
referred to as “transformed3”.

3. Software Workflow
Training was done on AFSL Rig 1 shown in Fig. 18 whose specifications are listed in Table 4, running Ubuntu

20.04. To train and run our model, we are using the YOLOv5 framework [5], which uses the PyTorch library. We have
created several Python scripts utilizing the OpenCV library to tile and cull the data for training as mentioned in Section
III.B. We have scripts in place to integrate YOLOv5 with various Python applications, including a GUI intended to be
used on a data analysis computer during the inference phase as shown in Fig. 4.

V. Computational Results
To evaluate how well our trained thermal and visual models perform at detecting humans under different wilderness

conditions and the corresponding computation speed, we first compare the testing results of four models, Visual-
YOLOv5x, Visual-YOLOv5l, Visual-YOLOv5m, and Visual-YOLOv5s. These models vary by network size as seen in
Table 3. The models are tested on datasets that contain images recorded with various backgrounds, camera positions,
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altitudes, times of day, and temperatures, as explained before. All the comparisons are conducted with four measures:
precision, recall, generalized intersection over union loss, and mean average precision, described as below. We then
discuss the running speed.

When evaluating the performance of the models, we are interested in the accuracy of the number, positions, widths
and heights of the bounding box outputs, with the last three specifying the precise location of the human detected. There
are many metrics that take these into account, and in this work we choose the following metrics that are commonly used
in object detection:

• Intersection over union (IoU), defined as

IoU =
Area of Intersection

Area of Union
(8)

measures the overlap between the box output and the ground truth. Generalized intersection over union (Generalized
IoU) loss [37] additionally considers the distances between non-intersecting boxes, which is useful to differentiate
between cases where there is no overlap at all.

• The precision, defined as

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
(9)

measures how accurate the outputs are considering all testing cases [38]. An IoU threshold is typically specified
for this measure—0.5 is often used.

• Similarly, recall, defined as

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives
(10)

shows how likely the true objects in the image frame are to be detected, with a certain IoU threshold specified.
• The average precision (AP) is the precision value at a specified recall value on the precision recall curve, and
mean average precision (mAP) is the average of multiple AP at different recall values.

Table 2 Comparison of Visual and Thermal Models

Model Precision Recall GIoU mAP0.5 mAP0.5:0.95 Train Time (Hours) Speed (FPS)

Visual-YOLOv5x 0.9012 0.8976 0.02889 0.9277 0.6940 15.25 149.25
Visual-YOLOv5l 0.8955 0.8968 0.02917 0.9260 0.6824 8.65 250.00
Visual-YOLOv5m 0.8885 0.8985 0.02950 0.9246 0.6669 5.35 384.61
Visual-YOLOv5s 0.8614 0.8954 0.03034 0.9197 0.6354 2.67 588.24
Thermal-YOLOv5x 0.9354 0.9848 0.02416 0.9783 0.6042 4.55 185.18

Raw-Scaled 0.7295 0.9264 0.03131 0.9246 0.4976 2.52 181.81
Raw-HSV-Scaled 0.7346 0.9333 0.03097 0.9237 0.4857 2.52 181.81
Transformed3 0.7364 0.9241 0.02798 0.9232 0.5114 2.52 181.81

The FPS in Table 2 are created from testing the trained model on the corresponding test set of imagery using a
network size of 512 × 512 on AFSL Rig 1 shown in Fig. 18 and whose specifications are listed in Table 4. In Table 2,
the best results among visual models and thermal models trained on processed thermal dataset are highlighted. The
first four rows show that, among the visual models that are all trained on the tiled visual dataset, Visual-YOLOv5x
performs the best in terms of accuracy. The fifth row presents the performance of Thermal-YOLOv5x that is trained on
the raw thermal dataset. As specified in Table 1, the size of the thermal dataset is much smaller than the visual dataset.
Thus, though the performance of Thermal-YOLOv5x performs much better, we did not compare visual models with
Thermal-YOLOv5x. The last two rows show the thermal models that are trained on the processed thermal datasets with
a smaller dataset size. For easier comparison, we also present the Raw-Scaled model that is trained on the corresponding
raw thermal dataset. Based on mAP0.5:0.05:0.95, the more strict measure, Transformed3 has promising results.

As for the training and testing speed, for visual models, YOLOv5s has the shortest training time and highest Frame
Per Second. For thermal models, the speed is the same among the last three models. In Section VII.D, we provide more
detailed figures entailing the testing results and comparison between models.
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Table 3 Network Size for Trainined Models

Model Layers

Visual-YOLOv5x 484
Visual-YOLOv5l 400
Visual-YOLOv5m 316
Visual-YOLOv5s 232
Thermal-YOLOv5x 484

Raw-Scaled 484
Raw-HSV-Scaled 484
Transformed3 484

A. Advantage of Radiometric Culling
Running YOLO at reasonable speeds on high-resolution visual input typically requires substantial downscaling.

Calling YOLOv5’s internal Python API directly, a 3840 × 2160 input video averaged around 5.2 FPS on AFSL Rig 1 as
seen in Table 4. By contrast, running radiometric culling and then YOLO on only the remaining radiometrically active
tiles averaged 18 FPS—a 346% improvement in speed. However, this added performance comes with the added cost of
potentially missing human subjects in environments where thermal detections suffer, such as in Fig. 10a.

VI. Operational Results
We chose to suppress thermal and visual detections below a confidence threshold of 40%. While smaller thresholds

let in false positives and larger thresholds create propensity for false negatives, for WiSAR applications the latter is
disastrous, so the threshold was chosen with a bias towards allowing in false positives, which matter relatively little.
Since there is a large variety of environments that can be encountered during WiSAR operations, the usefulness of
visual data and radiometric data can vary significantly—the latter excels in night-time environments where there is
relatively little ambient heat sources, while the former depends on high-visibility environments. Throughout this section,
we will use the Thermal-YOLOv5x model to analyze thermal imagery and the Visual-YOLOv5x model to analyze visual
imagery (see Table 2).

A. Daytime
During daytime operations, we found that major challenges in our image analysis occurred from variances in ambient

temperature, lens glare from either the sun or reflective ground surfaces, and transitions between shady and sunny
environments.
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1. Lens Glare

(a) Thermal Lens Glare: From left to right the detections are
80% and 56% confident

(b) Visual Lens Glare: From left to right the detections are 3%
and 13% confident

Fig. 9 Examples of Lens Glare in Thermal and Visual Imagery.

The position of the sun caused lens glare to occur, seen in Fig. 9b. This is realized as a hazy appearance to the
image, resulting in reduced performance in the visual detections but the thermal detections remain largely unaffected.
To create Fig. 9a we used a threshold of 40% and in Fig. 9b we used a threshold of 1% for visualization purposes. The
detections seen in Fig. 9b are significantly below the nominal 40% threshold used for detections and are unusable as too
many false positives would be let through if used on additional images. We found that these situations occurred quite
often during dusk and dawn situations when the sun was closer to the horizon. In most of these cases, the thermal
detections are unaffected due to the different material used in the construction of the thermal lens, seen in Fig. 9a.

2. Extreme Temperatures
Temperature changes in the environment largely only affected thermal detections.

(a) Hot Thermal example where detections in this image are all
false positives at or below 1% confident. The blue box in
this image is for the benefit of the reader to locate where the
human is. It is not a detection from our algorithm.

(b) Hot Visual with detection at 54% confidence

Fig. 10 Examples of Hot temperature (38 ◦C).

In Fig. 10a there are no true positives present using a 1% threshold. Meaning at 38 ◦C, thermal offers very little to
no benefit. This occurs since the background of the image is already near the body temperature of a human subject
resulting in very little noticeable features. In Fig. 10b the detection at 54% is above the 40% threshold and remains
useful.
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(a) Cold Thermal with detection at 76% confident (b) Cold Visual with detection at 61% confident

Fig. 11 Examples of Cold Temperature (9 ◦C)

Given the much cooler background temperature, the thermal imagery has significantly more noticeable features
around the human which allow for much higher detections as seen in Fig. 11a. The visual remains largely unaffected by
the temperature change in Fig. 11b compared to Fig. 10b.

3. Transitions between Sunny and Shady Environments

(a) Shade Sun Transition Thermal with detections from right
to left at 83%, 89%, and 79% confident. The blue box in
this image is for the benefit of the reader to locate where the
human is. It is not a detection from our algorithm.

(b) Shade Sun Transition Visual with detections on the humans
from right to left at 63%, 64%, 23%, and 37% confident.

Fig. 12 Shade Sun Transition

Transitions between sunny and shady environments proved to be a challenge because the thermal detections
performed very well in shady environments but very poorly in direct sunlight at 32 ◦C. This is because thermal sensor
is actually picking up a lack of heat in a specific area due to that specific area being kept from direct sunlight which
visually appears to be a shadow in Fig. 12a. The humans in this environment had very well defined features because
they were significantly hotter then the ground in the shadow. Since this environment was 32 ◦C, humans in the area not
in the shadow of the tree had very poorly defined features resulting in a very low confidence level. The threshold was
set to 20% in Fig. 12a for visualization purposes. At this threshold false positives begin to appear in the surrounding
environment. The visual detection performance was less then the thermal detection performance in the shade but better
in direct sunlight seen in Fig. 12a and Fig. 12b.
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B. Night

(a) Night Thermal with detections from right to left at 84%,
83%, and 81% confident.

(b) Night Visual: The blue boxes in this image is for the benefit
of the reader to locate where the human is. It is not a
detection from our algorithm.

Fig. 13 Examples of Night

Thermal detections out perform visual detections quite dramatically in night environments seen in Fig. 13a and Fig.
13b. A threshold of 5% was used in the analysis of Fig. 13b and 40% in Fig. 13a. The lack of any visual light makes
visual detections unusable. However since the environment cools off during then night compared to the day thermal
detections are unaffected by the lack of visual light as seen in Fig. 13a compared Fig. 11a.

VII. Future Work
The systems in this paper form a broad foundation which is well-suited for future extension. In particular, the CV

algorithms presented are versatile enough to be expanded for use with a variety of more sophisticated hardware systems.

A. Multi-Agent Systems
While range extenders offer a simple and obvious solution to handling range limitations, a more potentially interesting

solution that the AFSL is currently working on is the utilization of a secondary sUAS as a communications relay point.
This would not only allow for the primary sUAS to travel further away from the ground station, but also allow for flight
into beyond-visual-line-of-sight conditions.

A secondary sUAS unit could also be incorporated as an effective low pass filter. By flying at a high altitude, it
could classify regions of interest which a lower altitude sUAS unit could then inspect in further detail. A multi-altitude
system such as this could also be implemented with a manned helicopter instead.

B. Non-multirotor sUAS
In the case of a multi-agent system, a high-altitude low-pass sUAS could effectively operate without the ability

to hover in place–as a result, it could be replaced with a higher efficiency fixed-wing system. In addition, electronic
vertical takeoff and landing (eVTOL) systems could be used to exploit the benefit of better efficiency and speed while
maintaining the ability to hover in place.

C. On-board Computation
Large advancements in edge computing have opened up the possibility for on-flight computation. The AFSL is

working on integrating a Nvidia AGX Xavier onto our current flight platform as seen in Fig. 16. This will alleviate the
need to maintain a high bit-rate video link to the ground station, allowing for the expansion of the range of operation of
a sUAS by a substantial amount.
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D. Autonomous Path Planning
The AFSL is also working on implementing intelligent path planning algorithms, such as [10, 11]. Combined

with on-flight computation, these would allow for the creation of fully autonomous WiSAR platforms, limited only by
on-board battery life.
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Appendix

Appendix A: WiSAR Bill

Detailed Expense Report for SAR 11c05025 / State SAR #11-1616 (Thompson)
Completed by Sgt Kent Sisson

ST Hours = Straight-time Hrs / OT = Overtime Hrs
ST Rate = Straight time rate (not to include benefits)
OT Rate+ = Overtime rate + benefits (insurance, FICA, LI)
VOL = CCSO Volunteer

Day 1 Personnel Cost 1-Jun-11
Personnel Position ST Hours OT Hours ST Rate OT Rate+ Total
Sisson ATV Ops 8 2 $38.92 $81.99 $475.34
Ellis ATV Ops 10 0 $31.73 $70.19 $317.30
Bryant Support 8 2 $20.58 $41.70 $248.04

$1,040.68
Day 2 Personnel Cost 2-Jun-11
Personnel Position ST Hours OT Hours ST Rate OT Rate+ Total
Sisson I/C 8 7.5 $38.92 $81.99 $926.28
Ellis Ops Chief 10 5.5 $31.73 $70.19 $703.34
Bryant Log. Chief 8 7.5 $20.58 $41.70 $477.39
Seabright Team 1 Lead 0 15 N/A $59.79 $896.85
Nesary Team 1 0 15 N/A $64.59 $968.85
Norton Team 1 0 15 N/A $62.57 $938.55
Huddleston Team 2 Lead 10 6 $35.30 $77.63 $818.78
Moran Team 2 Vol Vol $0 $0 $0
Schively Team 2 Vol Vol $0 $0 $0
Shales Pilot Air 20 9 6 $25.00 $50.00 $525.00
Lawrence TFO Air 20 12 2 $30.22 $68.88 $500.40
Wisemore Admin/PIO 8 2 $37.70 $46.13 $383.86
Agnew PIO Lead 10 2 $42.44 $80.46 585.32
Isaacson Logistics Vol Vol $0 $0 $0
Coffman Logistics Vol Vol $0 $0 $0

$7,724.62
Additional Expenses:

Day 1 Day 2 Total
Meals $0 $54.00 $54.00
Aircraft Fuel $0 $398.60 (100 gal) $398.60
Aircraft Ops $0 15hrs @ $100hr $1,500

$1,952.60

Total Expense of SAR = $10,717.90
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Appendix B: Hardware

Aerial Unit

sUAS
The particular sUAS model selected was a DJI Matrice 600 Pro. It has a 9.5 kg weight without the WiSAR payload.

It is 114 cm motor to motor with the arms unfolded with 54 cm props on each of the six motors and stands 55 cm tall. It
uses six DJI TB47s mAh 6S batteries. A DJI A3 Pro is used to control the sUAS. It is connected to a DJI Lightbridge 2
which uses 2.4 GHz for telemetry and 5.8 GHz for video transmission at 1920 × 1080 at 60 FPS with an unobstructed
range of 5 km. There are three GNSS/IMU modules for redundancy (standard for DJI A3 Pro) which allows for ±1.5 m
horizontally and ±0.5 m vertically of accuracy. This aircraft was chosen for its ability to hold up to 6 kg max payload
which allows for a lot of freedom in the payloads which could be experimented with. It also requires minimal effort in
integrating, as the transmitter, a DJI GL858A, includes HDMI and SDI video out ports, which allows for the video to be
piped into the data analysis computer.

Fig. 14 DJI Matrice 600 Pro

)

Fig. 15 FLIR DUO PRO R

Payload
The main sensor used is a FLIR Duo Pro R with a weight of 325 g. The spectral band of the uncooled VOx

microbolometer sensor is 7.5 µm to 13.5 µm with a resolution of 640 × 512 and a FOV of 45° × 37°. The visual sensor
has a resolution of 4000 × 3000 and a FOV of 56° × 45°. The HDMI output provides a 1920 × 1080 video feed to the
Lightbridge unit. A secondary FlySky FS-i10 transmitter and Turnigy TGY-iA10b receiver is used to interact with the
FLIR via the three pulse-width modulation (PWM) connections to the 10-pin accessory port. This allows the operator
to change the color space used for the thermal image and select which video feed (thermal and visual) is being sent out
via HDMI. The FLIR is mounted on a Gremsey T3V3 Gimbal seen in 16. Power for the FLIR is provided from the 14.5
V output at the bottom of the gimbal which interfaces with the accessory port. The FLIR Duo Pro R was chosen for its
inclusion of both a thermal and visual sensors as they are both integral in this research.
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Fig. 16 Full Platform

Ground Unit

Video Capture Card
The external video capture card used is Razer Ripsaw HD which is able to support up to 1920 × 1080 at 60FPS.

An internal video card could be used as well but an external one was ultimately selected as we wanted the additional
modular functionality. This particular model was chosen for its ability to support the max resolution and frame rate that
the DJI Lightbridge 2 module supports.

Fig. 17 Razer Ripsaw HD

Fig. 18 AFSL Rig 1 Data Analysis Computer

Data Analysis Computer
The data analysis computer provides the necessary computing power required to analyze the incoming data from

the capture card in real time. The main visual image analysis is done by the YOLOv5 neural network in the PyTorch
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framework [5] based off of [34] and [39]. As YOLOv5, like most other real time CNNs, is primarily bottle-necked by
the GPU, this computer needed to have a high-end GPU, but also remain portable and rugged enough to take to real
WiSAR operations.

Table 4 Specifications of the computers tested for data analysis.

Data Analysis Computer GPU CPU RAM

AFSL Rig 1 Nvidia Titan RTX 24 GB VRAM AMD Ryzen 3900X 64 GB DDR4 3000 MHz

The GPU that we choose is the Nvidia Titan RTX, mainly for its 4608 CUDA cores and 24 GB of VRAM as this
allows us to use a network image size of 512× 512 at an average of 149.25 FPS on the Visual-YOLOv5x as seen in Table
2. The CPU is less important for running the CNN, but is valuable for running the numerical thermal analysis algorithms.
Thus a mid range CPU such as the AMD Ryzen 3900X sufficed. The amount of RAM was also not as important so 64
GB of DDR4 at 3000 MHz was also sufficient. The chassis was another important factor of this computer as it needed
to be small enough to remain portable but also rugged enough to withstand being in a car on rough terrain for longer
periods of time. While there are more rugged cases, such as the Silverstone MM01 or the line of rackmount cases from
Pelican, we chose to use a Corsair 110Q as we intended for this computer to be used primarily in the lab. For regular
use on site, a more rugged case is recommended. Additionally, there are no HDDs used as these are less resistant to
vibrations due to physical moving parts within them. NVME based M.2 SSDs are used in there place due to there small
form factor, fast transfer speeds and resistance to vibrations.

Appendix C: Challenges Encountered

Video Transmission Range
One of the key pieces in our system is the HD video transmission system. We found that the distance from the

operator to the drone was a significant limitation in the quality of the imagery that was received from the DJI LB2
module. We encountered frame drops at distances beyond 500 m. Even in a rural farm environment with clear line of
sight this was still an issue as seen in Fig. 19.

Fig. 19 The green line is the flight path of the sUAS and the yellow line is 500 m
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Streaming Radiometric Data
The thermal camera we used automatically will assign a non-fixed color scale to the imagery, assigning a certain

color to the coolest object in frame and another color to the hottest. If a human was in frame and the hottest color value
was assigned to them but then quickly walked out of frame, the the contrast of the image would dramatically jump up
because the new coolest and hottest points of the image are at a similar temperature as seen in Fig. 20a and Fig. 20b.

(a) Pre-transition (b) Post Transition

Fig. 20 Contrast Issue in Fast Transitions

Appendix D: Additional Computational Results
In this part, we discuss mainly on the results of the best visual and thermal models, and then present the more

detailed comparison for the four visual models and three thermal models.
As shown in Fig. 21, after 15 hours of training for the visual model and 4.5 hours for the thermal model, the

precision grows to 90.12% and 93.54% respectively, and the recall grows to 89.76% and 98.48% respectively, when
tested on testing dateset. Ideally, for the WiSAR purpose, we first prioritize reducing the number of false negative cases,
thus human subjects will always be detected, followed by reducing the amount of false positive cases, avoiding false
information for the human operator. Based on the results of the two measures, both of the models perform well. The
comparison between visual and thermal models is less useful because the sizes of the visual and thermal datasets are
different.

Fig. 21 Precision curve of the best thermal and visual mod-
els during training

Fig. 22 Recall curve of the best thermal and visual models
during training

In Fig. 23, we can see the Generalized IoU loss is reduced to 0.02889 for visual model and 0.02416 for thermal
model.
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Fig. 23 Generalized Intersection over Union Loss

As shown in Fig. 24, with recall being 0.50, both models have high mAP. Figure 25, which shows a more
challenging measure that considers AP with recall ranging from 0.50 to 0.95 with step 0.05, is further indicative of
strong performance across the board.

Fig. 24 mAP@0.5 curve of the best thermal and visual mod-
els during training

Fig. 25 mAP@0.5:0.95 curve of the best thermal and visual
models during training

In Figs. 26 to 30 compare both to the performance of several other visual models. As shown, Visual-YOLOv5x is
the best-performing visual model.

Fig. 26 Precision curve of four YOLO models during train-
ing Fig. 27 Recall curve of four YOLO models during training
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Fig. 28 MAP@0.5 curve of fourYOLOmodels during train-
ing

Fig. 29 MAP@0.5:0.05:0.95 curve of four YOLO models
during training

Fig. 30 GIoU curve of four YOLO models during training

Figures 31 to 35 show results of training YOLO on three forms of the thermal data from 3183 images from the
UWWiSAR dataset. “thermal-raw-scaled” is an exact recreation of the video output FLIR provides. It uses min–max
normalization to scale the raw temperature values to greyscale values between 0 and 255. “thermal-raw-hsv-scaled”
represents this same raw temperature data, but represented by hue in HSV as described in Section IV.B.2, as opposed
to in greyscale. This should theoretically provide a marginal benefit because of the wider range of available colors.
“thermal-transformed3” represents the output of the complete transformation described in Section IV.B.2. Figs. 31
to 35 and Table 2 show how Transformed3 performs compared to models trained on raw greyscale images and raw
HSV-converted ones. As shown, Transformed3 is the best-performing radiometric model.
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Fig. 31 Precision curve of three thermal models during
training

Fig. 32 Recall Curve of three thermal models during train-
ing

Fig. 33 mAP@0.5 curve of three thermal models during
training

Fig. 34 mAP@0.5:0.05:0.95 curve of three thermal models
during training

Fig. 35 GIoU curve of three thermal models during training
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