Ill-Posed Problems, Parabolic PDEs

Andrew Bereza

June 2020

Spring 2020 WDRP

Mentor: Kirill V Golubnichiy

Book: Equations of Mathematical Physics

A.N. Tikhonov, A.A. Samarskii
What is an ill-posed problem?

A problem is ill-posed if it does not satisfy the 3 conditions of a well-posed problem:

- **Existence**: There exists a solution.
- **Uniqueness**: The solution is unique.
- **Stability**: The solution depends continuously on initial conditions.

The inverse of a well-posed problem is generally ill-posed.
Classification of PDEs

Given a PDE of the form:

\[Au_{xx} + Bu_{xt} + Cu_{tt} + Du_x + Eu_t + Fu = G \]

Where \(A \ldots G \) are functions of \((x, t)\), the PDE is classified by the value of the discriminant \(B^2 - 4AC \)

\[B^2 - 4AC < 0 \quad \text{Elliptic} \quad \text{ex: Laplace’s equation} \quad u_{xx} + u_{tt} = 0 \]

\[B^2 - 4AC = 0 \quad \text{Parabolic} \quad \text{ex: Heat equation} \quad u_t - u_{xx} = 0 \]

\[B^2 - 4AC > 0 \quad \text{Hyperbolic} \quad \text{ex: Wave equation} \quad u_{xx} - u_{tt} = 0 \]
Solving a PDE - Separation of Variables

\[u_t - u_{xx} = 0 \]

Assume the solution is of the form \(u(x, t) = X(x)T(t) \) then,
\[u_t = XT' \quad \text{and} \quad u_{xx} = X''T \]

\[XT' - X''T = 0 \quad \rightarrow \quad \frac{T'}{T} = \frac{X''}{X} = -\lambda \]

Solving for \(X(x) \) and \(T(t) \) gives us the following solution sets:

<table>
<thead>
<tr>
<th>(\lambda < 0)</th>
<th>(\lambda = 0)</th>
<th>(\lambda > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 e^{-\lambda t}(c_2 e^{\sqrt{-\lambda}x} + c_3 e^{-\sqrt{-\lambda}x}))</td>
<td>(c_1(c_2x + c_3))</td>
<td>(c_1 e^{-\lambda t}(c_2 \cos(\sqrt{\lambda}x) + c_3 \sin(\sqrt{\lambda}x)))</td>
</tr>
</tbody>
</table>

Given conditions, we can narrow down to one form and solve w/ Fourier series.
Solving a PDE - Fourier series

Big idea: we can approximate any function of x on an interval as a series of sine/cosine waves.

$$f(x) = -x, [-1, 1] \text{ can be approximated by } \frac{2}{\pi} \sum_{n=1}^{k} \frac{(-1)^n}{n} \sin(\pi nx)$$

We must represent $u(x, 0) = f(x)$ in this form in order to satisfy the PDE.
Parabolic PDEs: well-posed vs. ill-posed

<table>
<thead>
<tr>
<th>Heat equation</th>
<th>(Reversed time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_t - u_{xx} = 0)</td>
<td>(u_t + u_{xx} = 0)</td>
</tr>
<tr>
<td>(u(x, 0) = f(x))</td>
<td>(u(x, 0) = f(x))</td>
</tr>
<tr>
<td>(u(0, t) = u(\pi, t) = 0)</td>
<td>(u(0, t) = u(\pi, t) = 0)</td>
</tr>
<tr>
<td>[\sum_{n=1}^{\infty} f_n \sin(nx) e^{-n^2t}]</td>
<td>[\sum_{n=1}^{\infty} f_n \sin(nx) e^{n^2t}]</td>
</tr>
</tbody>
</table>

Existence? ✓ Uniqueness? ✓ Stability? ✓

[Graph showing exponential decay for different values of \(n \)]

Existence? × Uniqueness? ✓ Stability? ×

[Graph showing exponential growth for different values of \(n \)]
Given the Fourier series we found for $f(x) = -x, [-1, 1]$ at $k = 3$, here's what the graph of $u(x, t)$ looks like:

<table>
<thead>
<tr>
<th>Heat equation</th>
<th>(Reversed time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_t - u_{xx} = 0$</td>
<td>$u_t + u_{xx} = 0$</td>
</tr>
</tbody>
</table>

A reasonable approximation: Huh…?
Why heat equation with reverse time is ill-posed

As we increase k, one graph becomes more accurate, while the other becomes more and more chaotic. $k = 15$:

<table>
<thead>
<tr>
<th>Heat equation</th>
<th>(Reversed time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_t - u_{xx} = 0$</td>
<td>$u_t + u_{xx} = 0$</td>
</tr>
</tbody>
</table>

More accurate

Chaos!
Thank you!

Andrew Bereza
bereza@uw.edu

Spring 2020 WDRP
Mentor: Kirill V Golubnichiy
Book: Equations of Mathematical Physics
A.N. Tikhonov, A.A. Samarskii