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Abstract—We consider the user selection downlink MU-MIMO
scheduling problem in the practical case where there are more
users than transmit antennas. First, we deduce a number of
structural properties for the sum data rate maximization function
under the reduced-complexity suboptimal approaches of zero-
forcing dirty-paper (ZF-DP) and zero-forcing beamforming (ZF-
BF) precoding. Next, we take advantage of the algorithmic
literature proposed in the context of combinatorial auctions when
bidders have subadditive valuations and propose a novel, fast,
greedy approach with very low computational complexity. Then,
we establish that both the proposed greedy algorithm and a
previously proposed algorithm, which iteratively augments the
scheduled user set, attain a M -approximation factor for both
ZF-BF and ZF-DP precodings, where M is the number of
antennas. To the best of our knowledge, this is the first time
that non-asymptotic performance bounds are obtained for this
problem. Finally, we compare via simulations the average sum
rates achieved by the greedy algorithms with the capacity of the
channel and show that they all achieve the full multiplexing gain
and their performance is not far from the optimal.

Index Terms—MU-MIMO; greedy scheduling algorithms; ap-
proximation; user selection; subadditive functions

I. INTRODUCTION

The ever increasing demand for wireless throughput has
pushed research and the industry to explore the capacity limits
of the wireless channel. Although frequency reuse, modulation
and coding schemes have only provided minimal gains in
the recent years, advances in the physical layer have made
it possible to provide significant gains by the use of MIMO
and MU-MIMO techniques [1], [2] as well as their distributed
implementation (see [3], [4] and references therein). In these
schemes, adding multiple antennas on the transmitters’ and
receivers’ side, for sufficiently rich scattering environment,
enables multiplicative gains equal to min(M,N), where M
are the transmitter antennas and N the receive antennas
compared to the throughput of the simple point-to-point case.

In this work we consider the user selection downlink MU-
MIMO scheduling problem. Our analysis is applicable for both
centralized and distributed scenarios, where the transmit-side
antennas are not collocated. The theoretical optimal solution
for such scenarios is provided by the so called Dirty Paper
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Coding (DPC) [2], [5] which exhibits however a highly
impractical implementation. Therefore, more practical, yet
suboptimal approaches have been proposed based on linear
and non-linear beamforming schemes such as Zero-Forcing
Dirty Paper (ZF-DP) [2] and Zero-Forcing Beamforming (ZF-
BF) [6]. When the number of downlink streams/users are
larger than the number of transmit antennas, a user/antenna
selection has to take place which identifies the optimal set of
streams/users to be scheduled. This problem is well known
to be computationally hard, and, motivated by this, to avoid
an exhaustive search over all possible subsets of users, in
[7] and [8] greedy policies have been presented and shown
to have good performance in simulation compared to the
optimal solution. In fact, the greedy ZF-DP has been shown
to asymptotically achieve the capacity limit of the channel in
[7]. These pioneering papers spurred a number of results in the
user selection problem [9]–[11] and more recently [12]–[14].

As a major departure from previous contributions, in our
work we are not just proposing a new heuristic for selecting
a subset of transit antennas to be served that showcases a
good asymptotic and/or simulated behavior. After a systematic
study and analysis of the characteristics of the objective func-
tions, and leveraging the literature of subadditive set function
maximization, which has been used in the context of combi-
natorial auctions, we provide deterministic (non-asymptotic)
theoretical bounds for the existing and proposed scheduling
algorithms for every channel realization. Our contribution is
threefold: a) We show that both ZF-BF and ZF-DP schemes
have subadditive utility functions, and prove an approximation
bound of M for both ZF-DP and ZF-BF, b) we show that
the ZF-BF function is non-submodular in the general case
and thus the submodular function theory cannot be used to
motivate tighter approximation bounds for the greedy policy,
and c) we show that the monotonicity of the ZF-DP utility
function allows to introduce a new heuristic, dubbed greedy
subadditive, with the same approximation bound M and a
significantly reduced computational overhead.

The rest of the paper is organized as follows. In Section II
we outline the related work. In Section III we formulate the
optimization problem and introduce our notation. In Section
IV we establish the connection with problems in the context
of set function maximization and prove a number of structural
properties for the sum rate capacity objective. In Section V
we introduce an algorithmic framework of greedy approaches



and prove the formal approximation bounds for the greedy
algorithms. In Section VI we present simulation results com-
paring the ergodic sum rates of the presented algorithms with
the channel capacity. Finally, in Section VII we discuss the
practical implications of our results and propose ideas for
future improvements.

II. RELATED WORK

In the context of approximation bounds for user/antenna
selection for MU-MIMO systems, most works have focused on
statistical analysis of the asymptotic behavior of these schemes
[7], [9], [10], [13] or on simulation results that show that a
large portion of the channel capacity is achieved (see [8],
[12] and references therein). Contrary to these results, our
approach gives approximation bounds in a deterministic and
not asymptotic sense, that is, for every channel realization we
guarantee the maximum distance from the optimal solution.

More related to our work are the results in [15] and
[16], where the submodularity and monotonicity of the utility
function is exploited to provide deterministic guarantees for
the performance of the greedy approximation algorithm. Both
of these works focus on the point-to-point MIMO and uplink
MU-MIMO cases and the capacity achieved by an optimal
but impractical precoding scheme. In contrast, we target the
MU-MIMO downlink and the practical ZF-BF and ZF-DP
solutions whose sum rate functions are proven to not exhibit
these properties.

III. PROBLEM FORMULATION

We consider a downlink MU-MIMO system consisting of
M antennas that are deployed at the transmitter and are going
to serve U single-antenna receivers (users). We define as U
the set of all users, where |U| = U , and we assume that the
total transmitted power is upper bounded by Psum. The channel
between the transmit antennas and user u ∈ U is assumed to be
flat-fading and is modeled by the vector hu whose elements,
hu,m, are the channel coefficients between antennas m (m =
1 . . .M ) and user u. By collecting all the user channel vectors
in a matrix H ∈ CU×M , we can write the downlink received
signal vector, y as: y = Hx + z, where x is the transmitted
signal vector and z the noise vector assumed here to have
i.i.d. circularly symmetric complex Gaussian zero mean, unit
variance entries, zu ∼ CN (0, 1).

We focus on the typical case where there are more users
available than antennas, i.e., U > M , where user selection
should be applied in order to approach the system’s sum rate
capacity. By user selection, at each scheduling slot, the goal
is to select a subset of users that maximize a target utility
function under a transmit power constraint. In a MU-MIMO
system, the users are spatially separated and are not generally
able to communicate with each other, so it is not possible
to jointly decode all the users’ observations. In this case, the
successful use of the channel requires careful scheduling and
precoding of the independent signals at the transmitter side in
order to invert the channel matrix and control the multiuser
interference.

We consider two well-known linear precoders, Zero-Forcing
Dirty-Paper (ZF-DP) [2] and Zero-Forcing Beamforming (ZF-
BF) [6]. As already mentioned, these two procedures lead to
reduced-complexity, suboptimal yet high-performing solutions
to the sum rate capacity maximization problem.

The use of ZF-DP precoding [2] is based on a QR-type
decomposition of the channel matrix H = GQ obtained
by applying Gram-Schmidt orthogonalization procedure to
the rows of H; G is a lower triangular matrix, and Q has
orthonormal rows. By setting Q∗ (the conjugate-transpose of
Q) as precoding matrix, it generates a set of M interference
channels of the form xu = gu,utu +

∑
j<u gu,jtj + zu, u =

1, . . . ,M , where tu is the transmitted signal,
∑
j<u gu,jtj

is the interference signal, and zu the corresponding noise in
channel u.

By applying DP coding on the transmitted signals, for
each channel m = 1, 2, . . . ,M , the interference caused by
users j < m is nulled. Moreover, by the choice of Q∗, the
interference caused by users j > m is also nulled, and thus
all interferences are forced to zero. By using Theorem 1 in [2],
it holds that the maximum sum rate capacity achieved by
ZF-DP precoding is obtained as the solution to the following
optimization problem:

(MP1): maximize
∑
u∈S

S⊆U :|S|≤M

[log2(µ(S)du(S))]+

subject to
∑
u∈S

[
µ(S)− 1

du(S)

]
+

= Psum (1)

du(S), µ(S) ≥ 0, ∀ S ⊆ U : |S| = M ,u ∈ S, (2)

where [log2 µ(S)du(S)]+ = max{0, log2(µdu(S)}, du(S) =
|gu,u|2 and µ(S) is the solution to the water-filling equation
(1) for a subset S ⊆ U . We refer to (MP1) as the ZF-DP
MU-MIMO SCHEDULING problem. On the other hand, the
use of ZF-BF precoding [6] consists of inverting the channel
matrix H at the transmitter so as to to create orthogonal
channels between the transmitter and the receivers, while
the receivers do cooperate with each other. This idea, in
contrast to the more complex vector coding which is needed
to implement DP, enables the individual encoding of users.
Since in our setting we have rank(H) = M , in order to
apply ZF-BF we need to select some 1 ≤ j ≤ M and
a set of channels {h1, h2, . . . , hj} which produce the row-
reduced channel matrix H(S) = [(h1)∗, (h2)∗, . . . , (hj)∗]∗,
such that the sum rate capacity is maximized. Similarly to
ZF-DP precoding, it can be proved [2] that the maximum sum
rate capacity is attained by solving the following optimization
problem:

(MP2): maximize
∑
u∈S

S⊆U :|S|≤M

[log2(µ(S)cu(S))]+

subject to
∑
u∈S

[
µ(S)− 1

cu(S)

]
+

= Psum (3)

cu(S), µ(S) ≥ 0, ∀ S ⊆ U : |S| ≤M ,u ∈ S (4)



where cu(S) can be computed from the channel submatrix
H(S), i.e., cu(S) = {[(H(S)H(S)∗)−1]u,u}−1, and µ(S) as
before, by using the water filling equation (3). The power
pu(S) allocated to each user u ∈ S is then given by
pu(S) =

[
µ(S)− 1

cu(S)

]
+

. We refer to (MP2) as the ZF-BF
MU-MIMO SCHEDULING problem.

For notational convenience, we denote by R(S) the sum rate
capacity over all users of a chosen subset S, in both ZF-DP
and ZF-BF precodings.

IV. ANALYZING THE OBJECTIVE FUNCTION

Based on the formulations (MP1) and (MP2) of the ZF-DP
and ZF-BF MU-MIMO SCHEDULING, a feasible solution to
this problem corresponds to a subset of users S, of cardinality
at most |S| ≤ M , with total power allocated to them equal
to Psum, and objective value R(S). It is important to note that
during the selection process the power allocation is computed,
for each candidate subset of users, in polynomial time using
the water-filling equation. Thus, we may assume without loss
of generality that the power allocation process is given as a
“black box”, for a candidate subset of users S. Then, our
problem can be formulated as max{R(S) | S ⊆ U : |S| ≤
M}. Clearly, according to this formulation ZF-DP and ZF-
BF MU-MIMO SCHEDULING can be described as a set
function maximization problem. To proceed with the analysis
of the sum rate capacity maximization objective, the following
preliminaries are required.

A. Definitions and Preliminaries

Let U be a universe of U = |U| elements and let
f : 2U → R+ be a set function. We are interested to the
standard SET FUNCTION MAXIMIZATION problem: We are
given a set of items U , and a positive integer M (cardinality
constraint) and the goal is to find a subset S ⊆ U : |S| ≤M ,
in order to maximize a set function f : 2U → R. More
compactly, this combinatorial problem can be formulated
as max{f(S) | S ⊆ U : |S| ≤ M} and is clearly related
to the ZF-DP and ZF-BF MU-MIMO SCHEDULING problem.

Definition 1. A set function f is said to be submodular if
f(A ∪B) + f(A ∩B) ≤ f(A) + f(B), for every A,B ∈ U .

Definition 2. A set function f is said to be monotone if
f(A) ≤ f(B), for every A ⊆ B ⊆ U .

An alternative and more practical definition of submodular
functions is based on a natural diminishing returns property.

Definition 3. A set function f is said to be submodular if
f(A ∪ u)− f(A) ≥ f(B ∪ u)− f(B), for every A ⊆ B ⊆ U
and u ∈ U \B.

It is well known [17], [18] that, when function f is
monotone and submodular, the following sequential greedy
algorithm obtains a tight approximation of (1 − 1/e) for the
SET FUNCTION MAXIMIZATION problem.
Algorithm G-SUBMODULAR. Start with an empty set S and
grow S, with respect to the cardinality constraint |S| ≤ M ,

by iteratively adding the item u ∈ U such that u =
arg maxu′∈U |S∪{u′}|≤M f(S ∪ {u′})− f(S).

The following class of complement-free set functions is a
substantial generalization of submodular functions.

Definition 4. A set function f is said to be subadditive if
f(A) + f(B) ≥ f(A ∪B), for every A,B ∈ U .

Contrary to submodular maximization, for subadditive max-
imization only a few results are known. These results have
been proposed in the context of combinatorial auctions (see
e.g., [19]–[22]) where we are given a set of U (heterogenous
indivisible) items that are sold to n competing buyers while
the buyers value subsets of items, rather than individual
single items, according to their valuation function. The main
objective is to find an allocation of the items to buyers in
order to maximize the social welfare [19], [23].

Note that a naive representation of a valuation function
would require us to specify 2U values, one for each possible
subset of items. However, in terms of algorithm design, the
goal is to run in time polynomial in the input size (e.g., in U
and n). Therefore, the combinatorial auctions literature usually
assumes that the valuation is represented by an oracle that can
answer certain types of queries. From a computer science point
of view, a very natural type of queries are called value queries
i.e., the query specifies a subset of items and receives the value
as the reply.

B. Properties of the objective function

Now, we are ready to deduce a number of structural proper-
ties for the sum rate capacity function of the ZF-DP and ZF-
BF MU-MIMO SCHEDULING problem. The following key-
proposition is based on an expression of du(S) and cu(S)
in [2, Section 3] and leads to some very useful properties of
the objective function. Its proof is differed to the Appendix.

Proposition 1. Consider the sum rate capacities of ZF-DP and
ZF-BF MU-MIMO SCHEDULING, for any two S ⊆ S′ ⊆ U :
|S|, |S′| ≤M . Then, for each user u ∈ S, it holds that
i) du(S) = du(S′),
ii) cu(S) ≥ cu(S′).

By using Proposition 1 together with some reasonable
assumption on the power budget, the following lemma holds
(see the Appendix for the proof).

Lemma 1. Consider the sum rate capacity R(S) in one of the
ZF-BF or ZF-DP MU-MIMO SCHEDULING problems. Then,
function R(S) is subadditive.

Since subadditivity does not negate the submodularity of
a function, the following proposition is crucial in terms of
algorithm analysis. Its proof can be found in the Appendix
and it is based on the construction of an appropriate instance.

Proposition 2. There are instances of the ZF-BF MU-MIMO
SCHEDULING problem, for which the sum rate capacity func-
tion R(S) is non-submodular.

It seems natural for some instances of ZF-BF MU-MIMO
SCHEDULING that the objective function might be non-



monotone, i.e., when adding a new user u in a subset S
it might be the case that pu(S′) (S′ = S ∪ {u}) is small
enough (or pu′(S′), for some user u′ ∈ S) such that, by
applying Proposition 1(ii), we yield that R(S′) ≤ R(S).
Contrary to ZF-BF MU-MIMO SCHEDULING, the sum rate
capacity of ZF-DP MU-MIMO SCHEDULING is proved to be
monotone non-decreasing. The next lemma, which is proved in
the Appendix, outlines these properties of ZF-DP and ZF-BF
MU-MIMO SCHEDULING.

Lemma 2. (i) The sum rate capacity of ZF-DP MU-MIMO
SCHEDULING is monotone non-decreasing.
(ii) The sum rate capacity of ZF-BF MU-MIMO SCHEDUL-
ING is non-monotone.

V. AN ALGORITHMIC FRAMEWORK

Next, by taking advantage of the algorithmic framework
that has been proposed for submodular and subadditive max-
imization, we present fast greedy algorithms with proven
performance guarantee for the ZF-DP and ZF-BF MU-MIMO
SCHEDULING problem.

Recall that our objective (for both ZF-DP and ZF-BF MU-
MIMO SCHEDULING) falls into the broader class of subaddi-
tive functions, while also, for some instances, the submodular-
ity condition of ZF-BF MU-MIMO SCHEDULING does not
apply. Therefore, it seems natural to design algorithms that
capture the nature of the objective function, while achieving
the best possible performance guarantees.

A. Two greedy algorithmic approaches

Before presenting our results, it is reasonable to assume
that R(S) is normalized (R(∅) = 0). Moreover, according to
Lemma 2(i) and Lemma 2(ii) we know that R(S) is monotone
non-decreasing for ZF-DP MU-MIMO SCHEDULING and
non-monotone for ZF-BF MU-MIMO SCHEDULING respec-
tively.

The first approach is a novel algorithm which is inspired by
the setting proposed in [19], [23] for the problem of allocating
items to buyers in combinatorial auctions in the presence of
value oracles; note that the use of value oracles for our problem
is quite natural, since, for each chosen subset S, the value of
the sum rate capacity R(S) can be computed analytically in
polynomial time. The algorithm, called G-SUBADDITIVE, is
executed as follows:

G-SUBADDITIVE

1: Partition U , uniformly at random, into k = d UM e disjoint
subsets. Let {S1, S2, . . . , Sk} be these subsets.

2: for each subset Sj , j = 1, 2, . . . , k do
3: Let the power budget be equal to Psum and compute

the value of R(Sj).
4: Compute R(S) = maxj=1,2,...,k R(Sj).

By combining Lemma 2(i) with Lemma 1 we are able to
prove that:

Theorem 1. Algorithm G-SUBADDITIVE is a M -
approximation for the ZF-DP MU-MIMO SCHEDULING
problem.

Proof. Consider an optimal solution (S∗, R(S∗)) to
the ZF-DP MU-MIMO SCHEDULING problem and
let (SALG, R(SALG)) be a solution of Algorithm G-
SUBADDITIVE. Note also that by Lemma 2(i), the sum rate
capacity function is monotone non-decreasing, so we can
assume that |S∗| = M .

By Lemma 1 the sum rate capacity is a subadditive function,
thus it must hold that

R(S∗) ≤
∑
u∈S∗

R({u}).

Then, there must exist a user v ∈ S∗ such that R({v}) ≥
1
MR(S∗).

Let Sj be the subset produced by Algorithm G-
SUBADDITIVE such that v ∈ Sj . By the monotonicity of the
sum rate capacity function it holds that

R(Sj) ≥ R({v}) ≥ 1

M
R(S∗). (5)

Now, since Algorithm G-SUBADDITIVE chooses the subset of
the partition with the maximum sum rate we have that

R(SALG) ≥ R(Sj). (6)

Combining the inequality (6) with (5) we yield that
R(SALG) ≥ 1

MR(S∗), and the theorem follows.

Unfortunately, Theorem 1 does not apply in the case of ZF-
BF MU-MIMO SCHEDULING, since the sum rate capacity
function is non-monotone. A well-studied problem that is
closely-related to ZF-DP and ZF-BF MU-MIMO SCHEDUL-
ING is the BUDGET-LIMITED PROCUREMENT AUCTION prob-
lem [21], where we are given a set of U items and a single
buyer, each item i is associated with a cost ci ∈ R+, and the
buyer has a budget B ∈ R+ and a valuation function over all
subsets of resources. The goal for the buyer is to maximize
his value with respect to the budget B. More precisely, our
problem can be expressed as a special case of the latter
problem, where ci = 1, ∀i = 1, 2, . . . , n (thus, budget B
becomes a cardinality constraint equal to M ) for subadditive
valuations in the presence of value oracles. Therefore, in the
case of ZF-BF MU-MIMO SCHEDULING, where the sum rate
capacity is also subadditive and is not submodular, a negative
result (in terms of communication complexity) proposed in
Theorem 5.4 of [21, Section 5] for the above special case of
BUDGET-LIMITED PROCUREMENT AUCTION, can be directly
applied.

Theorem 2. Any algorithm that attains an approximation
factor better than U

1
2−ε, for constant ε > 0, for the ZF-BF

MU-MIMO SCHEDULING problem, requires exponentially
many value queries, even when the valuation function is
fractionally subadditive.

A valuation function v is said to be fractionally subadditive
if there is a set of additive (linear) valuations {a1, a2 . . . , al}



such that for every S ⊆ U , v(S) = maxr∈[l] ar(S). Note
that the class of fractionally-subadditive valuation functions is
known to be strictly contained in the class of subadditive val-
uations and to strictly contain all submodular valuations [19].

A different algorithmic approach is a greedy algorithm
called G-ZFS, that has been proposed by Dimic and Sidiropou-
los [7, Section III-B] for the ZF-BF MU-MIMO SCHEDUL-
ING problem. The idea of G-ZFS is along the line of the earlier
described G-SUBMODULAR algorithm [17] for maximizing a
submodular function under a cardinality constraint, while also
taking into account the non-monotonicity of the objective.

Specifically, the algorithm G-ZFS proceeds as follows:
Iteratively add a user u that is not yet been included in (an
initially empty) set S. In each iteration, choose to add in S the
user u with the maximum marginal contribution i.e., for which
the sum rate capacity R(S ∪ {u}) is maximized. Break when
there is a user u such that, the sum rate capacity R(S ∪{u}),
where |S| < M , is less or equal than the sum rate capacity
R(S).

Note that in each iteration, for computing the sum rate
capacity of a candidate user set S, we solve the water-filling
equation for allocating power Psum in the users of S.

A crucial fact during the execution of G-ZFS is the use
of ‘break’ command. Actually, this is due to the fact that
the sum capacity rate of ZF-BF MU-MIMO SCHEDULING
is non-monotone function and thus, an optimal subset might
contain strictly less users than the cardinality constraint M .
More interestingly, as it is observed in [7] the optimum number
of active users decreases as the power budget (Psum) decreases.

For the performance guarantee of G-ZFS, we have:

Theorem 3. Algorithm G-ZFS is a M -approximation for the
ZF-BF MU-MIMO SCHEDULING problem.

Proof. Consider an optimal solution (S∗, R(S∗)) to
the ZF-BF MU-MIMO SCHEDULING problem and let
(SALG, R(SALG)) be a solution of Algorithm G-ZFS. By
subadditivity (Lemma 1) of the sum rate capacity function
we have

R(S∗) ≤
∑
u∈S∗

R({u}),

and thus there must be a user v ∈ S∗ such that

R({v}) ≥ 1

M
R(S∗). (7)

Now, consider a user - let umax - which attains the maximum
sum rate capacity (when all the power budget is allocated to
it). Since v is chosen arbitrarily, it must hold that

R({umax}) ≥ R({v}). (8)

Since Algorithm G-ZFS chooses first (to include in SALG)
the user umax, we have that

R(SALG) ≥ R({umax}). (9)

Combining the inequality (9) with (8) and (7) we yield that
R(SALG) ≥ 1

MR(S∗), and the theorem follows.

A greedy approach for the ZF-DP MU-MIMO SCHEDUL-
ING problem has been previously proposed by Tu and

Blum [8]. It is executed similarly to G-ZFS, however, instead
of adding the user that maximizes the sum rate capacity,
in each iteration, it evaluates the user with the highest 2-
norm projection. For consistency, here we present and analyze
Algorithm G-ZF-DP which is executed in the same way as G-
ZFS, while using the ZF-DP nulling scheme which has been
described in Section III. Moreover, due to Lemma 2(i), the
’break’ step is removed, and the algorithm runs until exactly
M users have been selected. Similarly to the proof of Theorem
3, we can show the following:

Theorem 4. Algorithm G-ZF-DP is a M -approximation for
the ZF-DP MU-MIMO SCHEDULING problem.

Remark: A note on time complexity is in order. For algorithms
G-ZFS and G-ZF-DP the overall complexity is O(M3U)
(see in [7, Section III-C]). For Algorithm G-SUBADDITIVE,
the time for computing the sum rate capacity of a subset
Sj is O(M2), while there are d UM e subsets to be checked.
The overall running time of Algorithm G-SUBADDITIVE is
O(MU). Obviously, Algorithm G-SUBADDITIVE under both
ZF-DP and ZF-BF schemes, is executed significantly faster
than G-ZFS and G-ZF-DP respectively.

VI. SIMULATION RESULTS

In this section we present simulation results about the
performance of the various described schemes. As a perfor-
mance metric we compute the ergodic sum rate through Monte
Carlo simulation over 100s of realizations of the random
channel matrices that follow the Rayleigh fading model with
hu,m ∼ CN (0, 1).

The schemes under comparison are the G-ZFS algorithm,
the G-ZF-DP algorithm and their subadditive counterparts. For
comparison purposes we also compute the channel capacity
upper bound achieved by DPC. In Figure 1 we see that all
schemes achieve the so called degrees of freedom gain, that
is the slope of their ergodic sum rate against the SNR is the
same as that of the channel capacity bound. Moreover, all four
greedy policies respect the theoretic bounds we provided and
in fact achieve up to 90% of the channel capacity in practice
for the ZF-DP based schemes. Even the G-SUBADDITIVE
applied to ZF-BF, although no theoretic guarantee could be
provided (the function is non-monotone, see Lemma 2(ii)),
still achieves more that 70% of the channel capacity in most
cases with a complexity significantly reduced compared to G-
ZFS.

It is interesting to note that, although both the greedy
and greedy subadditive algorithms give the same theoretical
guarantees, their performance is not guaranteed to be the same.
In fact, we see that the greedy user selection will outperform
the subadditive algorithms since a significantly greater amount
of work is put into carefully selecting the users. We hasten to
point out however, that in terms of time complexity, which is
important in practical user selection scenarios with fast varying
channels, the subadditive algorithms can be up to O(M2)
times faster. In fact, this gives us the ability, to tradeoff part of
the greedy subadditive algorithms time efficiency for higher
performance by creating multiple random user set partitions
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for M = 4 antennas and 25dB SNR.
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Fig. 3: Sum Rate vs Number of Antennas
for U = 3xM users and 25dB SNR.

and choosing the best. These schemes are depicted in Figure 1
as modified (mod) G-SUBADDITIVE algorithms for a constant
number of random partitionings of the user set, making sure
that time complexity remains significantly below the G-ZFS
and G-ZF-DP algortihms.

Finally, a note on the scaling of the algorithms is in order. As
can be seen in Figures 2 and 3, the proposed G-SUBADDITIVE
schemes exhibit the same scaling properties as their greedy
versions. Specifically, for a fixed number of antennas, as the
number of users increases, higher multi-user diversity allows
for an increase in the sum rate of all algorithms [7], [9].
Moreover, for a fixed user/antenna ratio, we see in Figure 3,
that as the number of antennas increases, the G-SUBADDITIVE
low complexity scheme still manages to unlock most of the
multiplexing gains of the system with a loss of 30% at
worst case which is still well above the guaranteed 1/M
approximation bound.

VII. DISCUSSION AND FUTURE WORK

A crucial open question is whether ZF-DP MU-MIMO
SCHEDULING is submodular or not. Note that in the first
case, since the sum rate capacity is monotone non-decreasing,
Algorithm G-ZF-DP would obtain a tight approximation of
(1 − 1/e), following the same analysis as in Algorithm G-
SUBMODULAR [17], [18]. However, if the problem is not sub-
modular then we would still like to tighten our approximation
ratios either by improving our analysis or by proposing other
efficient algorithms.

Similarly, for the ZF-BF MU-MIMO SCHEDULING prob-
lem we would also like to improve the performance guarantee
of G-ZFS despite proving, by a counterexample, that this is
not a submodular problem. Note that although we have found a
few instances for which the ZF-BF MU-MIMO SCHEDULING
problem is not submodular, the performance of the G-ZFS
algorithm under high enough multi-user diversity leads us
to the conclusion that for the subset of users on which the
algorithm operates the channel is such that conditions for
the submodularity of the sum rate function are met. In our
future work we plan to explore this property to get tighter
approximation bounds. Finally, an interesting direction for
overcoming the non-monotonicity and non-approximability of
the sum rate capacity in ZF-BF MU-MIMO SCHEDULING

is to investigate the use of demand oracles, instead of value
oracles, in combinatorial auctions. To this direction, we could
build on ideas of Badanidiyuru et al. [22], which design con-
stant approximations for the (monotone and non-monotone)
subadditive maximization problem in the presence of demand
oracles.
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Appendix

Proof of Proposition 1

For the shake of simplicity, we consider the case of sub-
sets S ⊆ S′ that differ only in a single user, i.e., S =
{u1, u2, . . . , uk} and S′ = {u1, u2, . . . , uk, uk+1}, where
1 ≤ k < M ; the generalization can be easily deduced by
induction on the cardinality of S.
For statement (i) we have that [2]

dui
(S) = hiP (Si)

⊥(hi)∗ = |hiP (Si)
⊥|2, (10)

where hi, i = 1, . . . , k are the ordered rows of H(S),
P (Si−1)⊥ is the orthogonal projector on the orthogonal com-
plement of FSi−1

= span{hj : uj ∈ Si−1}, for i = 2, . . . , k
and the last equality holds due to the fact that P (Si)

⊥ is
idempotent.

Similarly, for the subset S′, equation (10) gives that
dui(S

′) = |hiP (Si−1)⊥|2, where P (Si−1)⊥ is again the
orthogonal projector on the orthogonal complement of FSi−1 ,
and the proof follows.
For statement (ii) we have that [2]

cui
(S) = |hiP (S−i)

⊥|2, (11)

where S−i = S\{ui} and P (S−i)
⊥ is the orthogonal projector

on the orthogonal complement of FS−i
.

When subset S′ is considered, by (11) we yield,
cui(S

′) = |hiP (S′−i)
⊥|2, where P (S′−i)

⊥ is the orthogonal

complement of FS′−i
. By definition of FS−i

we have that
FS−i

⊂ FS′−i
and thus cui

(S) ≥ cui
(S′).

Proof of Lemma 1

We will prove the lemma for the ZF-BF MU-MIMO
SCHEDULING problem. A similar proof can be also applied
for ZF-DP MU-MIMO SCHEDULING.

In terms of our analysis we will need the following notation
and result from the theory of majorization [24].

Definition 5. Let x = (x1, x2, . . . , xm) ∈ Rm and y =
(y1, y2, . . . , ym) ∈ Rm and xi ≥ xi−1, yi ≥ yi−1, for
1 < i ≤ m. Then, x is said to be weakly majorized by y
from below if x ≺w y, i.e.,

x ≺w y if
k∑
i=1

xi ≤
k∑
i=1

yi ∀k = 1, 2 . . . ,m.

The following theorem is equivalent to Theorem C.1.b
in [24, Chapter 3] and is a key ingredient of our proof.

Theorem 5. Let g : R → R be a function which is convex
and decreasing. Let also x, y ∈ Rm, with their components
in decreasing order. Then,

∑m
i=1 g(·) is schur-convex and

decreasing on Rm. Consequently, x ≺w y implies that
m∑
i=1

g(xi) ≤
m∑
i=1

g(yi)

Recall that, by (MP2) formulation, the sum rate capac-
ity of any subset T is R(T ) =

∑
u∈T [log2 µ(T )cu(T )]+

where µ(T ) is the solution to the water-filling equation∑
u∈T

[
µ(T )− 1

cu(T )

]
+

= Psum. According to our assump-
tion for high channel signal-to-noise ratio we have that the
power of each user in T will be strictly positive. Then, by
using equation pu(T ) = cu(T )

[
µ(T )− 1

cu(T )

]
+

from Section

III, it must be the case where µ(T ) · cu(T ) > 1, for each
u ∈ T , and thus the sum rate capacity is written as R(T ) =∑
u∈T log2 µ(T )cu(T ). Moreover, the solution to the water-

filling equation is equal to µ(T ) = 1
|T | (Psum +

∑
u∈T

1
cu(T ) ).

Now, consider two subsets S1, S2 ⊆ U and let S = S1∪S2.
Let also R(S1), R(S2) and R(S) be the sum rate capacity
and let µ(S1), µ(S2), µ(S) be the solution to the water-filling
equation for each of S1, S2 and S respectively. Then, by using
Definition 4 we must prove that

R(S1) +R(S2) ≥ R(S).

Since the sum of logarithms of the same base is equal to
the logarithm of the product and the logarithm function is
monotone non-decreasing, we have to prove that

(
∏
u∈S1

µ(S1)cu(S1)) ·(
∏
u∈S2

µ(S2)cu(S2)) ≥ (
∏
u∈S

µ(S)cu(S)),

which is equivalent (since all ingredients are positive) to

µ(S1)|S1|µ(S2)|S2|
∏
u∈S1

cu(S1)
∏
u∈S2

cu(S2)∏
u∈S cu(S)

≥ µ(S)|S|.



Now consider the index x = arg mini=1,2{µ(Si)} and let
S′x = {u ∈ Sx|u ∈ S1 ∩ S2}. Then, by applying Proposition
1(ii), we should prove that

µ(S1)|S1|µ(S2)|S2|
∏

u∈S1∩S2

cu(S′x) ≥ µ(S)|S|

or equivalently,

µ(S1)|S1|µ(S2)|S2| ≥ 1∏
u∈S1∩S2

cu(S′x)
µ(S)|S|. (12)

The following fact is an extended form of the classic
inequality of arithmetic and geometric means, and is very
useful for our analysis.

Fact 1. It must hold that

1∏
u∈S1∩S2

cu(S′x)
≤
(P +

∑
u∈S1∩S2

1
cu(S′x)

|S′x|

)|S′x|
. (13)

Note that 1
|S′x|

(P +
∑
u∈S1∩S2

1
cu(S′x)

) = µ(S′x). Thus,
combining Fact 1 and (12) it suffices to prove that
µ(S2)|S2|µ(S1)|S1| ≥ µ(S)|S|µ(S′x)|S

′
x|.

Since |S′x| = |S1 ∩ S2| and |S| = |S1 ∪ S2|, it must hold
that |S1| + |S2| = |S| + |S′x|. Moreover, for convenience, let
us denote by

µ̃(T ) = (P +
∑
u∈T

1

cu(T )
),

the part of µ(T ) without the term 1/|T |, for any T ⊆ U . Then,
we should prove that

|S||S||S1 ∩ S2||S1∩S2|

|S1||S1||S2||S2|
·µ̃(S2)|S2|µ̃(S1)|S1| ≥ µ̃(S)|S|µ̃(S′x)|S

′
x|.

Now, it is not difficult to show that the term |S||S||S1∩S2||S1∩S2|

|S1||S1||S2||S2|

is lower bounded by one, and thus it suffices to prove that

µ̃(S2)|S2|µ̃(S1)|S1| ≥ µ̃(S)|S|µ̃(S′x)|S
′
x|. (14)

Using Proposition 1 ii), it must hold that µ̃(·) is a monotone
non-decreasing set function, i.e.,

µ̃(T ′) ≤ µ̃(T ) ∀T ′ ⊆ T ⊆ U , (15)

By assuming, without loss of generality, that µ̃(S1) ≤ µ̃(S2)
and by using (15), it must hold that

µ̃(S′x) ≤ µ̃(S1) ≤ µ̃(S2) ≤ µ̃(S). (16)

For notational convenience, let us define the subsets

S̄k =

{
S2 k = 1, . . . , |S1|
S1 k = |S1|+ 1, . . . , |S1|+ |S2|

,

¯̄Sk =

{
S k = 1, . . . , |S|
S′x k = |S|+ 1, . . . , |S1|+ |S2|.

The following is a key-fact and can be proved by appropriate
use of Proposition 1(ii) and (16).

Fact 2. For each k = 1, 2, . . . , |S1|+ |S2|, it holds that
k∑
i=1

µ̃(S̄i) ≤
k∑
i=1

µ̃( ¯̄Si) (17)

Now consider the convex and decreasing function
g : R → R, where g(·) = − log(·), and two orders
x = (µ̃(S2), . . . , µ̃(S2), µ̃(S1), . . . µ̃(S1)) ∈ R|S1|+|S2|

+ ,
y = (µ̃(S), . . . , µ̃(S), ˜̃µ(S′x), . . . , ˜̃µ(S′x)) ∈ R|S1|+|S2|

+ , where
their components are in decreasing order; note that there are
|S2| copies of µ̃(S2) and |S1| copies of µ̃(S1) in x, while
in y there are |S| copies of µ̃(S) and |S′x| copies of ˜̃µ(S′x)
respectively. Then, by Fact 2 it must hold that x ≺w y and
by Theorem 5, the Lemma follows.

Proof of Proposition 2

We will prove this using a counterexample. Without loss of
generality we choose a setting with U = 4 users and M = 4
transmit antennas and available transmit power of Psum = 30
dB. Assume that an instance of the channel matrix H whose
elements are drawn from a CN (0, 1) is the following:

H =


1− 0.5i −0.5− 0.6i 0.1 + 1.1i 0− 0.2i
−0.7 + 0.4i 0.5− 0.1i −0.2− 0.3i 1.8 + 0.9i
−0.6 + 0.6i 0.3 + 0.1i 0.2− 0.2i −0.2− 1.5i
−0.7 + 0.5i −1.4 + 0.4i 0.4 + 0.5i −0.7− 0.6i


Computing the optimal sum rates for the sets of

users S1 = {1, 2}, S2 = {1, 2, 3}, S3 = {1, 2, 4} and
S4 = {1, 2, 3, 4} by solving the water-filling power allocation
problem (3) we find R(S1) = 14.57, R(S2) = 12.46,
R(S3) = 19.07 and R(S4) = 17.02. Since S1 ⊂ S3 and
R(S1 ∪ {3}) − R(S1) < R(S3 ∪ {3}) − R(S3), the function
is not submodular due to Definition 3.

Proof of Lemma 2

(i). Consider the sum rate capacities of ZF-DP MU-MIMO
SCHEDULING, R(S1), R(S2), computed for two subsets S1 ⊆
S2. As logarithm function is monotone non-decreasing, it
suffices to prove that

µ(S1)|S1|
∏
u∈S1

du(S1) ≤ µ(S2)|S2|
∏
u∈S2

du(S2)

which, by using Proposition 1(i), is equivalent to

µ(S1)|S1| ≤ µ(S2)|S2|
∏

u∈S2\S1

du(S2). (18)

Now, by using the classic inequality of arithmetic and geo-
metric means, it must hold that

µ(S1)|S1|µ(S2 \ S1)|S2|−|S1| ≤ µ(S2)|S2| (19)

By substituting (19) in (18) it suffices to show that µ(S2 \
S1)|S2|−|S1|

∏
u∈S2\S1

du(S2) ≥ 1, which is true as the values
of µ(·) and du(·) are positive.

(ii). This is the case for the instance used in Proposition 2.


