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ABSTRACT
To satisfy the increasing demand for additional bandwidth
from the wireless sector, regulatory bodies are considering to
allow commercial wireless systems to operate on spectrum
bands that until recently were reserved exclusively for mili-
tary radar. Such co-existence would require mechanisms for
controlling interference. One such mechanism is to assign a
precoder to the communication system, which is designed
to minimize the communication system’s interference to
the radar. This paper looks into whether the implicit radar
information contained in such a precoder can be exploited
by an adversary to infer the radar’s location. For two
specific precoder schemes, we simulate a machine learning
based location inference attack. We show that the system
information leaked through the precoder can indeed pose
various degrees of risk to the radar’s privacy, and further
confirm this by computing the mutual information between
the respective precoder and the radar location.

Index Terms— Machine Learning, Null space precoding,
Radar Privacy, Spectrum co-existence, Spectrum sharing

I. INTRODUCTION
Historically, exclusive use of commercial spectrum is

granted through a license to frequencies that do not overlap
with those allocated for military purposes. It has been
observed though [1], [2] that this access strategy leads to
underutilization of the licensed spectrum for large periods
of time. To overcome this issue, spectrum regulators have
proposed allowing commercial cellular systems to have
access to the band 3550-3700 MHz, which was previously
restricted for use by military radar [3], [4]. Co-existence
of cellular systems and radar on the same bands requires
a mechanism to control the interference that one system
exerts to the other [5]. Such mechanisms include enforcing
large geographical separation between the two systems [6],
or using dynamic spectrum allocation methods [7], [8]. Here,
we consider a more bandwidth efficient solution that relies
on spatial multiplexing [9], [10]. In that context, spectrum
sharing between a multiple-input-multiple-output (MIMO)
radar and a MIMO communication system has inspired a lot
of research [11], [7], [8]. Existing works mostly offer designs

that optimize the objective of one system or the other, such
as the null space projection precoding schemes of [10], [12],
[13], [11]. Co-design of radar and communication systems
has been proposed in [14], [9], [15]

In [14], [9], [15], spectrum sharing is moderated by a
controller, which collects information from the two systems
and designs precoders for them, so that some performance
objective is met. The precoders contain information about
the two systems, which may raise privacy concerns. For
example, consider a smartphone co-existing with a military
radar; the smartphone is assigned a precoding matrix to
control the interference that it generates towards the radar.
If an adversary got access to the smartphone’s precoding
scheme, then it could potentially reverse engineer the pre-
coder and obtain information about the radar, e.g. the radar’s
location. Of course, by using dedicated equipment one could
localize the radar based on its high power. Here, however,
the possibility opens up that somebody with a smartphone
can localize a radar operating nearby.

In this paper, we consider a communication system con-
sisting of a stationary MIMO smartphone that is communi-
cating with a base station, operating in the same spectrum
bands with a stationary collocated MIMO radar. The radar
transmit antennas transmit orthogonal waveforms. The mea-
surements of all receive antennas are forwarded to a fusion
center for processing and target estimation. Interference
towards the MIMO radar can occur either when the radar
is obtaining the target echoes, or when forwarding these
samples to the radar fusion center. To limit the interference
towards the radar, a precoder matrix designed by a controller
is assigned to the smartphone. Here, we assume that the
controller is part of the MIMO radar fusion center, so as
to eliminate the possibility of interference during commu-
nication with the controller, as well as the risk of radar
information being sent to an untrusted node.

The prospect of an adversary obtaining information be-
yond that directly revealed by the controller, is referred to
as an inference attack. In this paper, we are interested in
examining the extent to which the information contained in
the exchanged precoders can pose a privacy risk to the co-
existent MIMO radar system. More specifically, we consider
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an adversary, disguised as an operating smartphone that
uses a machine leaning approach to determine the radar
location. The adversary partitions its search area into cells,
and proceeds by training a separate classifier for each cell,
using precoder matrices sent to the smartphones in the past.
Once the classifiers of all cells are trained, for every new
precoder observation, the adversary can determine the cell
in which the radar is located. The location privacy of the
examined precoder schemes is directly related to the amount
of information the precoder reveals about the radar location.
To gain more insight on this claim, we estimate the mutual
information (MI) [16] between the used precoder scheme
and the radar location.

A similar scenario was studied in [17], where an adversary
wanted to determine the probability that the licensed user
is located in a cell. There, the authors assume an adver-
sary conducting a series of queries from various positions
requesting channel access. For every received query reply
regarding channel availability, the adversary updates the
probability that the licensed user is located in a cell. Once
the probability exceeds a predefined threshold, the adversary
achieves a level of confidence of the licensed user location.
Our approach is different that [17] in that the adversary uses
information that is sent to the users anyway. Further, our
approach does not update the respective cell probabilities se-
quentially after each observation, but rather, given available
training data, trains a separate classifier for each cell. In our
previous work on the same topic [18], the adversary attempts
to estimate the radar’s angle using a particle filter and a
metric derived from the precoder. However, the inferred
angle in [18] cannot uniquely determine the radar’s position,
and also, mapping the actual precoder matrix to a metric,
discards useful information.

In the following, Section II introduces the co-existence
setup and the considered interference mitigation strategies.
The adversary inference procedure is presented in Section
III, followed by the simulations and conclusion in Section
IV and V, respectively.

II. SYSTEM MODEL

Let us assume the setup depicted in Fig. 1, where a
collocated MIMO radar with M tx

R transmit and Mrx
R re-

ceive antennas co-exists on the same spectrum band with a
communication system, i.e., a smartphone. The smartphone
has M tx

C transmit antennas and communicates with a local
base station, which has Mrx

C receive antennas, through the
uplink channel H ∈ CMrx

C ×M
tx
C . The uplink communication

creates interference to the radar, occurring over channel
G2 ∈ CMrx

R ×M
tx
C , while the downlink communication

occurs in another frequency band and thus does not create
interference. The MIMO radar creates interference to the
base station over channel G1 ∈ CMrx

C ×M
tx
R . The interference

channel matrix is directly related to the radar location, as
seen in the following model [19], [20]:

Fig. 1. A collocated MIMO radar sharing the same spectrum bands
with a MIMO communications system.
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where λc is the carrier wavelength, Ex the transmit energy,
and d the radar distance from the smartphone; K is the
Rician factor [19], SLoS = er(Ωr)et(Ωt)

T , and SNLoS is a
matrix of i.i.d. NC(0, 1) entries. The transmit and receiving
steering vectors are given by
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with Ωt = sin(φt),Ωr = sin(φr) corresponding to the
angles of incidence of the Line-of-Sight path on the transmit
and receive uniform linear arrays, respectively, and ∆t and
∆r, the transmit and receive antenna spacing, respectively.

II-A. Interference Mitigation
In order to mitigate the interference to the radar, the

communication system is assigned a precoder matrix. Two
separate precoder schemes are considered here.

Null Space Precoder: This precoder [10], [12], [13] zero
forces the interference to the radar receive antennas. It equals
the null space of the interference channel G2, i.e.

Pn = null(G2). (3)

To ensure that a null space exists, the number of radar
receive antennas needs to be smaller than the number of
communication transmit antennas.

Optimized Precoder: This precoder [14], [9], [15] aims
to minimize the interference power to the radar, subject to
meeting power and rate constraints. The precoder Po =

R
1/2
x is the solution to the optimization problem

arg min
Rx

tr(G2RxG
H
2 ) (4)

s.t. tr(Rx) ≤ Pt (5)

Cavg = log2 det(I + R−1
in HRxH

H) ≥ C (6)

where Rx is the covariance matrix of the transmitted code-
words. Pt is the transmit power budget of the smartphone
and C is the minimum communication rate. Rin is the
interference plus noise covariance at the communication
receiver, which is assumed to be known.
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III. ADVERSARY ESTIMATION
We consider a scenario in which an adversary operating

a set of S independent smartphones, observes at every
point in time t = 1, . . . , T all precoder matrices Pt =
{Pt

1, . . . ,P
t
S} which are sent to the smartphones by the

controller. Each precoder is in general a function of G2,
i.e., Pi = f(Gi

2 + W), i = 1, . . . , S, where W is additive
white Gaussian noise (AWGN). For simplicity, we assume
that each precoder is obtained independently of the others,
and they are all stacked into a long vector. We also assume
the adversary is not capable of estimating G2; otherwise, it
would not need to reverse engineer the precoding matrix, as
G2 contains direct information about the radar location.

To initiate its search, the adversary considers a number of
discrete possible radar locations Ri, i = 1, . . . , NR, within
the region of interest. In the assumed inference attack, loca-
tion privacy is the goal, so the adversary treats the unknown
radar locations as a random variable R, and attempts to
create an estimate of its probability density function (pdf),
pR, based on the observed precoders sent by the controller.
This can be formulated as a Bayesian inference problem,
where the conditional pdf of a sequence of T candidate radar
locations given a sequence of T precoders equals

pR
(
R1, . . . , RT |P1, . . . ,PT

)
=

pP |R
(
P1, . . . ,PT |R1, . . . , RT

)
pP (P1, . . . ,PT )

pR
(
R1, . . . , RT

) (7)

where pP |R is the probability of the observed precoder
matrices given a specific location. The adversary has no prior
information about the radar location, so it must assume that
all radar candidate locations are equally likely a-priori, i.e.
pR

(
R1, . . . , RT

)
is a constant. The controller assignments

are assumed memoryless, so it follows from (7) that

pR
(
R1, . . . , RT |P1, . . . ,PT

)
=

T∏
t=1

pP |R
(
Pt|Rt

)
∑
R

T∏
t=1

pP |R (Pt|Rt)

, (8)

where the denominator refers to the sum over all possi-
ble candidate location sequences R. If the adversary was
familiar with the a-priori probabilities pP |R (Pt|Rt), e.g.
by past experience, then computing (8) for every possible
combination of candidate locations would produce the op-
timal estimate of the pdf. However, this is computationally
prohibitive due to the large candidate space.

Instead, the adversary may follow a sub-optimal location
estimation method, such as the supervised machine learn-
ing approach we consider here. Our formulation uses the
individual complex elements of the precoding matrices sent
to every colluding smartphone, separated into their real and
imaginary parts, and stacked into a vector, as features to
a classification problem. A classifier is trained for every
separate grid cell using a balanced training set, along with
the respective training labels which describe for each training

sample the radar cell location they intend to protect. We
consider two separate classifiers, namely the Naive Bayes
and the SVM, to make sure our formulation is not classifier
dependent. Once the training is performed, the adversary
can test every new precoder observation with all grid cells
in parallel, in order to determine the radar location for which
the respective precoders were meant to protect.

III-A. Mutual Information
One way to quantify the amount of information a precoder

reveals about the radar location is to measure the MI between
the precoder and the radar location. Here, MI determines the
potential reduction in the adversary’s uncertainty of the true
radar position.

Let the random variable R be described by the joint pdf of
radar coordinates in cell c, i.e. p(Rx, Ry). Corresponding to
R is the precoder random variable, P , described by the joint
pdf of its elements, p (P (1), . . . , P (n)), where n the number
of individual precoder matrix elements. The MI between
these continuous random variables is defined as [16]

I(R;P ) ,
∫∫

p(R,P )log2

p(R,P )

p(R)p(P )
dRdP (9)

where p(R,P ) the joint radar-precoder pdf and p(R), p(P )
the respective marginal pdfs. Due to the difficulty in ob-
taining closed form expressions for these pdfs, we proceed
to estimate them numerically, using a multi-dimensional
histogram.

IV. SIMULATION RESULTS
We simulated a scenario that examined the adversary’s

inference potential. The adversary had partitioned the 2× 2
km search area into 500×500 sq.m. imaginary cells, in order
to make a binary decision as to whether the radar is located
in each cell. We assumed that the adversary was controlling
S = 5 smartphones. The smartphones had coordinates that
are uniformly chosen in [0, 1000], and were communicating
with a common base station, as shown in Fig. 2. The
radar system had Mrx

R = M tx
R = 6 antennas and the

communication system had M tx
C = Mrx

C = 8 antennas. We
should note that although current smartphones incorporate
4×4 MIMO, LTE-advanced can support up to 8×8 MIMO
[21]. We further model H as a NC(0, 1) Rayleigh fading
channel, and G1 as a Rician fading channel. The carrier
frequency was taken to be 3.55 GHz. As mentioned before, it
is assumed that the adversary is not capable of estimating the
interference channel. Nevertheless, as a baseline approach
for comparison in our simulations, we considered the case
in which the adversary observes G2, denoted by Pb. Three
separate balanced training sets Lc

b, Lc
n, Lc

o, of 6000 samples
each were created for cell c = 4 of Fig. 2, for the cases
where the adversary observes the baseline precoder, Pb,
the null space precoder, Pn, and the optimal precoder, Po,
respectively. A separate test set T c for c = 4 was created,
consisting of 2375 samples, where 500 samples correspond
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Fig. 2. The adversary search area is confined within the dashed
square and is divided into cells.

to precoders of radar locations in c = 4, and 1875 samples to
no radar in c = 4. To avoid over-fitting, the radar locations
used for T c differ from those used in Lc. In general, the
analysis is independent of the chosen grid cell.

The receiver operating characteristic (ROC) for cell c =
4, obtained using the Naive Bayes and SVM classifiers is
shown in Fig. 3. The true positives represent the cases in
which the classifier correctly determined that the radar was
located in c = 4, while the false positives represent the cases
in which the classifier decided the the radar was present in
c = 4, when in reality it was not. Fig. 3 clearly shows that
the information contained in Pb would yield a near perfect
radar location prediction by the adversary. On the other hand,
the use of Po results in an almost diagonal ROC curve,
which essentially corresponds to a random adversary guess.
Moreover, we also see that Po can be considered a better
option as compared to Pn in protecting the radar privacy.
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Fig. 3. The ROC curve for the test set of c = 4.

The MI was computed numerically for all assumed pre-
coders in c = 4. Depending on the precoder, the bins of the
multi-dimensional histogram where created from the positive
samples of Lc

b, Lc
n, or Lc

o, using the K-means clustering
algorithm [22]. The MI for a varying number of antennas, is
shown in Fig. 4. The setup is similar to before, only now we
consider a single smartphone located at (0, 0) and no AWGN
present in G2. A first observation from Fig. 4 is that

Fig. 4. MI between precoders and radar positions for a varying
number of (a) transmit and (b) receive antennas.

I(R;Po) < I(R;Pn) < I(R;Pb), (10)

which basically means there is a greater reduction in the
uncertainty of R when observing Pb than when observing
Po. In other words, Pb reveals the most information about
a radar location, while Po the least. The right inequality of
(10) is also a consequence of the data processing inequality
[16], which states that for a Markov chain R → Pb → Pn,
processing cannot increase information.

From Fig. 4a we observe that when using Pb or Pn,
an increase in the number of transmit antennas at the
communication system results in an increase in MI. This
can be justified by the respective increase in the column
space of Pb, which directly affects the size of Pn as
well. On the other hand, in Fig. 4b we see a reduction
of the MI for a fixed number of communication system
antennas as the number of receive antennas at the radar
increase. The final observation from Fig. 4 is that I(R;Po)
is very small. This indicates that R and Po are close to
being independent, with most of the radar information being
suppressed in the optimized precoder. This is due to the
fact that, as opposed to Pn which is only a function of
G2, Po is additionally a function of H,G1. The channel
H by definition has no information regarding the radar
position. Also, Po is obtained as the solution of a constrained
optimization problem, which makes the contribution of G1

to the final solution less transparent. Although the optimal
precoder seems to be better for the radar privacy, it does
involve more computational complexity.

V. CONCLUSIONS
This paper considered a co-existence scenario between

a collocated MIMO radar and a set of stationary MIMO
smartphones, where the latter are controlled by an adver-
sary. We examined the extent to which the adversary can
infer radar location information from the communication
system precoder matrix, using a machine learning based
inference attack. Depending on the used precoder scheme,
our simulations indicated that this was indeed possible, a
result further supported by our estimation of the mutual
information between the precoder matrix and radar location.
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