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Fig. 4. Worst-case and average throughput ratios for CSMA-CA and maximal
scheduling against optimal scheduling for different neighborhood sizes.

Fig. 5. (a) Worst-case throughput achieved at as a function of the inter-
ference factor for , . (b) Worst-case throughput ratio
achieved at as a function of the interference factor for ,
.

scheduling. (The other plots in this figure will be derived in
Section III-D.)
Now, we present the value of , the scheduling factor

and the interference factor as determined by the first part of the
algorithm for the worst-case topology. for the worst-case
topology is always equal to . This is not surprising as
collisions cause exponential backoffs reducing the throughput
drastically. The scheduling factor and the interference factor
for the worst-case topology are always equal to 1 irrespective
of the value of .10 This is surprising, as a smaller inter-
ference factor implies fewer edges interfering with each other,
which should actually improve the throughput performance of
CSMA-CA. However, note that optimal scheduling also has a
better throughput performance for smaller interference factors.
Thus, decreasing the interference factor improves the perfor-
mance of both scheduling schemes. However, the improvement
is more significant for optimal scheduling than CSMA-CA be-
cause CSMA-CA schedules noninterfering neighboring edges
independently rather than simultaneously. Fig. 5(a) and (b)
shows this by plotting the worst-case throughput achieved
at for CSMA-CA and optimal scheduling and the corre-
sponding ratio for different values of the interference factor for

.

10We numerically verify that these two characteristics hold until
. Also, topologies with the scheduling factor 1 but equal to the interfer-

ence factor yield the same bound. However, for these topologies, the ratio com-
puted is a lower bound, while for the topology with ,
this is the exact achieved value.

Fig. 6. Worst-case topology for . (a)Worst case with no assumptions
on the physical layer. (b) Worst case assuming the protocol model of interfer-
ence.

As an example of how the worst-case topology looks like, we
plot this topology for in Fig. 6(a). It contains eight
noninterfering asymmetric edges.

D. Imposing Practical Constraints

The worst-case topology derived in the previous section
might not be constructible in practice due to the geometrical
constraints imposed by the physical layer. Hence, the worst-case
performance of CSMA-CA for practical topologies should be
better than the one derived in the previous section. Note that
we still studied the worst-case performance of CSMA-CA
with no physical-layer constraints because of its following two
advantages: 1) it establishes absolute worst-case bounds; and 2)
it gives an analytical explanation of the surprising observation
that the throughput ratio of CSMA-CA over optimal improves
as the interference factor increases.
In addition to the assumptions specified in Section III-B.1, in

this section, we also assume a particular physical-layer model.
Bounds on deterministic scheduling schemes like maximal
scheduling and greedy maximal scheduling were derived
assuming the protocol model of interference for analytical
tractability [8], [16]. To be able to make a fair comparison as
well as maintain analytical tractability, we also use the protocol
model of interference. Setting the interference range in the
protocol model is important to get realistic results. In this
section, instead of setting the interference range so as to get
more realistic results, we set the interference range to get the
worst-case bounds on CSMA-CA. In other words, we choose
the interference range so that the worst-case throughput ratio
is minimized. Thus, with more realistic interference range
settings, the performance of CSMA-CA would be even better.
In the previous section, we proved that the more the interfer-

ence is in the topology, the better CSMA-CA’s throughput ratio
is. Thus, we should set the interference range to its minimum
possible value to minimize interference. Hence, we set the in-
terference range to be equal to the transmission range.
Our assumptions on the physical layer impose two constraints

on how edges in can interfere with each other.
1) Noninterfering Neighbors: The first constraint bounds

the maximum number of noninterfering neighboring edges of
. Using a derivation similar to [8], we derive the following

two rules. 1) The maximum number of nodes that interfere with
but not , as well as do not interfere with each other

is equal to 4. This rule bounds the maximum number of nonin-
terfering edges in to be 4. Thus, the worst-case topology
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TABLE III
DEFINING THE SECOND CONSTRAINT

derived in the previous section is not feasible for . 2)
The maximum number of nodes that interfere with either
or but do not interfere with each other is equal to 8. This
rule implies that any neighborhood with more than eight edges
cannot have an interference factor equal to 1.
2) Interference Between Edges Belonging to Different Max-

imal Independent Sets: Let , . Let , de-
note the set of edges in that also belong to . The number
of edge pairs with one edge in and the other edge in that
interfere with each other effects the throughput ratio. Theorem
3.4(a) proves that all such edge pairs interfere with each other
in the worst-case neighborhood topology derived without incor-
porating physical-layer constraints.
The second constraint bounds the maximum number of in-

terfering edge pairs with edges belonging to different maximal
independent sets. Table III states the maximum number of edges
in that an edge in can interfere with for different cardi-
nalities of and . These values are derived by writing the
geometrical constraints imposed on the transmitter and receiver
of these edges and checking if a solution exists.
Now, let , denote the set of edges in that also

belong to . In a similar fashion, we derive that the max-
imum number of edges in that an edge in can interfere
with is governed by Table III also.
3) Numerical Results: We now look at the worst-case

throughput ratio with the protocol model of interference. We
construct the worst-case topology using brute force by con-
structing all possible topologies allowed after imposing these
two constraints, evaluating the performance of CSMA-CA and
optimal scheduling for each of these topologies and finding the
one that has the worst throughput ratio. Thus, results for this
section are derived by numerically solving the analytical model
after imposing the two constraints derived in Sections III-D.1
and III-D.2. This procedure formally establishes the worst-case
bounds for CSMA-CA with the protocol model. Note that
having an analytical model allows us to quickly evaluate the
performance of CSMA-CA for each topology. If one had to
evaluate the performance using ns-2 or Qualnet simulations, this
approach will become prohibitively expensive. For example,
on a 3.06-GHz Linux box, finding the worst-case neighborhood
topology for using Qualnet simulations will take
more than 800 h, and this time will exponentially increase as
the number of neighboring edges increases.
The dashed line with dots in Fig. 4 plots the worst-case

throughput ratio of CSMA-CA for the protocol model. The
worst-case performance never goes below 30% with the con-
straints imposed by the protocol model. We also see jumps
at multiples of 8 because the maximum number of noninter-
fering neighbors (which can be scheduled simultaneously)
can have is equal to 8; hence, after a multiple of 8, optimal

scheduling takes one extra slot to schedule, which deteriorates
its throughput performance. Note that the performance of
CSMA-CA also deteriorates, but not as much as optimal sched-
uling, hence the observed jump at multiples of 8. Fig. 4 also
plots the worst-case throughput ratio of maximal scheduling
(dashed line with rhombus), which is equal to 12.5%.
4) Characterizing the Worst-Case Topology: Recall that

the worst-case neighborhood topology derived in Section III
without imposing any geometrical constraints from the phys-
ical layer had the following four characteristics: 1) lowest
interference factor possible; 2) scheduling factor is equal to 1;
3) uniformly distributing edges among the maximal indepen-
dent sets; 4) all neighboring edges belonged to . Now we
characterize the worst-case topology derived with the phys-
ical-layer model assumed in this section. The intuition derived
in Section III for the first three characteristics still holds. We
numerically verify that the worst-case topology has these three
characteristics for all values of .
The last characteristic gets modified slightly. We explain the

reason using an example. Let us consider the worst-case neigh-
borhood topology for . Recall that the maximum
number of noninterfering edges possible in is 4, but the
minimum possible interference factor for is equal
to 1 (see Section III-D.1). Thus, five edges cannot be placed in

while maintaining the interference factor to be 1. Hence,
the third characteristic now becomes the following: For a given

and interference factor, contains as many edges as
possible, and the remaining edges are contained in . Thus,
for , contains four edges, and contains
the fifth one. We numerically verified this characteristic for all
values of .
As an example of how the worst-case topology looks like,

we plot this topology for in Fig. 6(b). There are four
asymmetric edges, four coordinated station edges, and none of
the edges in interfere with each other.

E. Summary

To summarize, the presence of the following two interfer-
ence characteristics in the congested neighborhood leads to a
worse performance with CSMA-CA: 1) presence of noninter-
fering edges; 2) presence of asymmetric edges. These two char-
acteristics explain every observation we made in Section II on
the performance of CSMA-CA in multihop topologies.
1) In the fork topology [Fig. 2(g)] and chain-cross [Fig. 3(j)],
we observed that the presence of flows in congested neigh-
borhoods that interfere with a common flow but do not
interfere with each other deteriorates CSMA-CA’s perfor-
mance. The reason directly follows from the first charac-
teristic that noninterfering edges in the congested neigh-
borhood degrades CSMA-CA’s performance.

2) In the chain topology, the interference characteristics in the
congested neighborhood are different for each value of ,

. It remains the same for all , . Hence, the
throughput ratio does not change for the chain topology
with .

3) The chain with two interfering short flows [Fig. 3(d)]
achieves better throughputs than the chain topology
[Fig. 3(a)]. The reason being that the congested edge
changes to from edge . has fewer
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edges but more noninterfering edges, while has
more edges, but all of them interfere with each other. Thus,
the first characteristic implies that CSMA-CA will have a
better performance for the chain with two interfering short
flows topology.

4) The chain with three interfering short flows [Fig. 3(g)]
achieves worse throughputs than the chain with two inter-
fering short flows [Fig. 3(d)]. Also, the actual throughput
values for flows , , and are the same in
both the topologies. Thus, the lower throughput achieved
for flow is the cause of the throughput loss. The
reason being that the second congested edge is with
which edge interferes asymmetrically.

F. Discussion

In this section, we briefly discuss some additional results to
support our thesis.
Typical Topologies: To understand how CSMA-CA does for

typical topologies instead of worst-case ones, we use simula-
tions to derive the average throughput ratio of CSMA-CA and
optimal scheduling by simulating 2000 randomly generated
neighborhood topologies. We found the average throughput
ratio to be always within 55% for topologies with less than
20 neighbors. We also study the throughput ratio achieved
in a real topology of an outdoor residential deployment in a
Houston, TX, neighborhood [6]. At the max-min allocation,
the throughput ratio was found to be equal to 66.8%, which,
not surprisingly, is closer to the average ratio rather than the
worst-case ratio.
Low Overhead of CSMA-CA: CSMA-CA exchanges only

two control messages, namely RTS and CTS, per packet trans-
mission. For most multihop topologies, by adding more control
overhead, theoretically it is possible to improve CSMA-CA’s
throughput performance. For example, if one can implement
greedy maximal scheduling with zero overhead, one can get
close to 100% of the optimal for both the stack topology and the
chain topology introduced in Section II-B. This fact is observed
through simulations similar to ones performed in [17]. To com-
pare the two scheduling schemes after incorporating the control
overhead, we implement the distributed algorithm proposed to
implement greedy maximal scheduling [18]. At the max-min
allocation, greedy maximal scheduling and CSMA-CA allocate
0.134 and 0.14 Mb/s per flow, respectively, for the flow in the
middle topology and allocate 0.047 and 0.06 Mb/s per flow,
respectively, for the chain topology. Thus, CSMA-CA outper-
forms a scheme as efficient as greedy maximal scheduling in
real multihop topologies as it achieves good throughputs with
low overhead.
More Realistic Interference Range Setting: To understand

howmuch throughput ratio we gain by assuming amore realistic
interference range setting in the protocol interference model,
we derive the worst-case throughput ratio when the interference
range is twice the transmission range, which is the most pop-
ular assumption on the value of the interference range [35]. We
find the throughput ratio to be always within 38%, which, as ex-
pected, is better than the throughput ratio of 30% achieved when
the interference range is equal to the transmission range.
Accuracy of the Model Used: The accuracy of our results di-

rectly depends on the accuracy of the model proposed in [15].

In addition to the model verification presented in [15], we also
verify the accuracy by deriving the throughput of CSMA-CA at
the congested edge at the max-min allocation from Qualnet
simulations in the worst-case neighborhood topology found in
Section III-D. The corresponding throughput ratio is plotted
in Fig. 4. Note that we do not verify the curve for the worst
case with no physical-layer assumptions as the topology cannot
be constructed in practice. The small variations in throughput
ratio is due to the approximations made in the analytical model
of [15] to simplify analysis.
Complexity of Rate Control: One may wonder whether the

high performance of a low-overhead scheduler like CSMA-CA
is achieved at the expense of a high-overhead rate controller.
Interestingly, close-to-optimal throughputs over CSMA-CA
in multihop networks are achievable with low-complexity
distributed rate control algorithms similar to TCP; see, for
example, [28] and [34].

IV. CONCLUSION

This paper establishes that CSMA-CA achieves fair and
efficient throughputs in multihop networks by characterizing
the worst-case throughput bounds for CSMA-CA in one-hop
neighborhood topologies. We observe that CSMA-CA easily
outperforms maximal scheduling and achieves worst-case per-
formance close to greedy maximal scheduling, which is one of
the best known approximately optimal scheduling algorithms.
The results presented in this paper motivate the use of random
access schedulers in single- and multihop wireless networks
and prompt researchers to investigate the design of practical
congestion control and rate allocation protocols that can realize
this good performance over random access schemes.

APPENDIX A

Whether edges in interfere with each other or not af-
fects only the value of (the busy probability at ) [15].
Minimizing the throughput achieved by IEEE 802.11 at

implies maximizing . We first prove subcase (a). If two
edges in interfere with each other, then the busy proba-
bility at is higher than when they do not interfere with each

other. By definition, the edges belonging to a do
not interfere with each other. Since there is no such restriction
on distinct edges belonging to different maximal independent
sets, letting them interfere with each other increases the busy
probability.
We next prove that the throughput ratio for the worst-case

topology with scheduling factor equal to 1 and the interference
factor equal to is smaller than the throughput
ratio for the worst-case topology with scheduling factor equal to

and interference factor equal to . The throughput
of optimal scheduling is the same for both the topologies. For
the latter topology, all edges have to be a part of
at least maximal independent sets. Now, the more the
number of edges interferes with, the larger is the busy proba-
bility, and smaller is the throughput of CSMA-CA. Solving the
optimization problem to maximize the number of edge pairs
that interfere with each other in the latter topology yields that
there are maximal independent sets of size
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, which turns out to be the same as the
former topology as shown at the end of the proof.
Next, to prove subcase (b), we derive a lower bound on the

busy probability of a topology with scheduling factor equal to 1
and the interference factor equal to .

Lemma A.1: Increasing the rate at any of the edges in
reduces the rate at .
This lemma directly follows from the observation that the

busy probability at is a monotonically increasing function of
the rate at [15].
Lemma A.2: For a rate allocation assigning the maximum

possible equal rate to all edges in , there always exists
a neighborhood topology with the worst-case throughput ratio
at with being the congested edge.
This lemma follows directly from the definition of congested

neighborhood.
Lemma A.3: IEEE 802.11 allocates equal rates to all the

edges in the worst-case neighborhood topology at the max-min
allocation.

Proof: Given the rate allocation that assigns the maximum
possible equal rate to all the edges in , by LemmasA.1
and A.2, the rate at none of the edges can be increased without
either reducing the rate at or making the system unstable.
Thus, it is a max-min rate allocation.
At the max-min allocation, all edges in have a

rate equal to . Using the results from [15], we derive
. Maximizing

under the constraint yields

. Thus, the max-

imum value of is equal to

.

APPENDIX B

In this appendix, we discuss how the algorithm described in
Section III-C.1 can be used to study neighborhood topologies
with multiple flows per edge.
We first discuss the case where an edge in has

flows passing through it. We construct a new equivalent neigh-
borhood topology by breaking this edge into new edges, where
each of these newly created edges has one flow passing through
it, it interferes with every other edge in the remaining neighbor-
hood topology in exactly the same manner as the original edge,
and each of these newly created edges’ transmitters can talk to
every other new edge’s transmitter with zero propagation delay.
We will prove that the throughput ratio at the congested edge is
the same in both topologies.
Each maximal independent set in the original topology that

contains the old multiflow edge will have corresponding sets
in the new topology, each with one of the new edges because:
1) the interference patterns for this new edge with every other
edge is the same as before; and 2) these new edges interfere with
each other, hence they cannot belong together in any maximal
independent set. Each of these maximal independent sets in the
original topology can be used by optimal scheduling to schedule
none, one, or multiple flows on the old multiflow edge. Let us
say one of these sets is being used to schedule one of the flows in

the original topology, and this flow passes through the th new
edge, , in the new topology. Since a corresponding set
exists in the new topology having the th edge, this set can be
scheduled to satisfy the flow with no impact on other edges.
Thus, the original optimal schedule directly yields the optimal
schedule for this new topologywith no impact on the throughput
of other edges including the congested edge.
Next, we prove that the throughput on the congested edge

does not change under CSMA-CA as well. An edge in
impacts the throughput on , the congested edge, only by
changing . We prove that the value of remains
the same in both topologies, and hence the throughput on
remains the same. Reference [15, Lemma 14] derives the value
of idle probability, and hence equivalently the busy probability
on a given edge. As per this result, is governed by

, which is derived in [15, Lemma 11].
denotes that there is a transmission going on at edge and is
derived in [15, p. 1125] before Lemma 11 to be ,
where is derived in [15, p. 1122] before Lemma 3 and
depends on the DATA collision probability on , is the
arrival rate on and is the packet transmission time that
is a constant for a fixed size packet. Let us consider ,
which is a set containing all subsets of having exactly

edges. Then,
remains the same in both the topologies for all values of be-
cause: 1) the new edges have exactly the same DATA collision
probabilities, and hence the same as the original edge
(since RTS-CTS is used, no extra DATA collisions will occur
due to the addition of these extra edges); and 2) the sum of the
arrival rates on these new edges is the same as the arrival rate
on the original edge. Hence, that is derived
using remains the same,

which implies remains the same in both topologies. This
proves that a topology with multiple flows per edge for edges
in can be replaced by an equivalent topology with one
flow per edge.
A similar argument holds for splitting an edge in with

multiple flows into edges with a single flow each because the
expression governing as derived in [15, Lemma 13] is very
similar to the expression for , the only difference being that
it will depend on edges in and not in .
Finally, there can be multiple flows going through the con-

gested edge. This has no impact on the algorithm described in
Section III-C.1, as nothing in the algorithm precludes the con-
gested edge having multiple flows.
To summarize, a neighborhood topology with multiflow

edges can be represented by an equivalent neighborhood
topology with only single-flow edges in and having
the same throughput ratio, and hence the algorithm of
Section III-C.1 can be used to derive the worst-case throughput
ratio for neighborhood topologies with multiflow edges as well.
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