New thinking about security for the internet of things
Credible protection for critical infrastructure systems
4 October 2016

Neil Siegel, Ph.D.
USC Viterbi IBM Professor of Engineering Management
Background

• Until 1 January, I was vice-president & chief technology officer for Northrop Grumman Information Systems
• I started the work described herein while I was at Northrop, and am continuing it at USC

• **Cyber protection**: primarily for the U.S. intelligence community
• **Physical protection**: primarily for large facilities in the middle east: U.S. air force bases, U.S. Army bases, ARAMCO facilities
Thinking about the “internet of things”

- Huge “upside” potential
 - Efficiency, cost reduction, “1+1=3” capabilities
- But . . . if we don’t get the security and privacy right – from the very beginning – I predict that we will not be allowed to realize much of that potential
 - SCADA and cyber-enabled physical systems already today represent threats of physical damage due to hacking / etc., not just data loss.
 - Tomorrow’s internet-of-things just magnifies this by many orders of magnitude
So . . . I am thinking about security in the IoT context . . .
... and have concluded that almost all cyber-security today is based on a *false premise*
“Operating with the enemy inside”

- Most cyber protection is based on a false premise: that we can keep bad actors outside of our critical systems
 - The “M&M” security model: “hard on the outside, software on the inside”
 - It is not surprising that systems are routinely hacked
- I have been researching the problem of how to reliably continue critical mission processing, and to continue to protect critical data, even after the bad guys have gotten into our systems
 - Very promising results

Could be the key differentiator for IoT
How?

- “White-list-only” processing
- Encrypted storage of executables and data
- Temporal purging of virtual images on a frequent (ideally, execution-instance-by-execution-instance) basis, where no executables survive, and the only data that survives such purging are defined by the white-listing methodology (“proactive automatic restore”)
- Methods and metrics for measuring when the design is really complete, in some cases via formal (mathematical) means
- Automatic, high-rate modulation of system configuration
- Trust-zone segmentation
- Strong identification of users and actors
Next insight: IoT is a *cyber-physical* system . . . so we must think about security in the context of that holistic view
Integrated cyber / physical protection

• We created a concept: that combining cyber and physical situational awareness would improve over-all understanding, and lead to better decisions, and better protection

• Funded a project with USC (with Professor Donald Paul, former CTO of Chevron), and established a lab on campus for this purpose
 • Focused initially on use-cases in the energy business
 • Lab is set up around a “smart-grid” use-case
 • Examined a number of scenarios, and showed both the technical feasibility, and the potential for value
USC cyber / physical integration lab

N-Dimension SCADA
Anomaly Analytics via Internet

Campus LAN

Lab LAN

Control Room

Sub-stations

HVAC

Metering

SCADA Sniffer*

NG physical protection system

NG network protection system

Other protection systems

Adding integrated analysis and annunciation
Summary

• I believe that **security and privacy protection** will “make or break” large-scale internet-of-things adoption

• Most security architectures in use today – and planned for tomorrow – are **fundamentally flawed**
 • “Operating with the enemy inside” will lead to better protection, and will also be convincing to the general public

• The internet-of-things is fundamentally a cyber-physical system, and techniques based solely in one or the other of those domains will be inadequate
Back-up information
USC Energy Institute: major ongoing programs

- Intelligent Energy Infrastructures:
 - Smart Oil and Gas Fields – CiSoft (initiated in 2003)
 - Smart Power Grids – USC Smart Grid Living Laboratory / DOE – LADWP Demonstration Program (initiated in 2009)

- Cyber-Physical Security Systems for Energy Infrastructures
 - NGC/USC Laboratory for Energy Security Systems (initiated in 2014)
Questions / discussion