Elevated numbers of mast cells in angiomatous meningioma

Bartosz Bujan1,2 and Hans D. Mennel1

1Department of Neuropathology, University of Marburg, Marburg, and 2Department of Neurology, Rehabilitation MediClin Center Bad Orb, Bad Orb, Germany

Sir, – Angiomatous meningioma is a subgroup of meningioma with an extraordinary number of vessels. The diagnosis “meningioma, angiomatous,” however, is hampered by the fact that the different components of this tumor entity are not clearly specified, especially in terms of their quantitative relations. In the last draft of the WHO classification, the following description of the tumors is given: “Angiomatous meningioma exhibits numerous blood vessel on the background of a typical meningioma” [1, 2]. Therefore, to overcome this diagnostic difficulty, it has been postulated that the vascular component of the neoplasm should exceed 50% of the total tumor area [3].

Angiomatous meningiomas are frequently associated with pronounced edema [1, 4]. Angiomatous (and secretory) meningiomas show edema production in ~ 80% [5] of the cases compared to an unselected meningioma sample with only ~ 60% [4]. In previous studies it had been shown that secretory meningiomas are also strongly vascularized and exhibit high mast cell density, with obvious accumulation of mast cells around newly formed vessels [6, 7]. These similarities prompted us to analyze angiomatous meningiomas for their mast cells, density and edema formation. To corroborate our previous preliminary findings, we therefore studied anew the cohort of angiomatous meningiomas (n = 27) in comparison to unselected meningiomas (n = 16) and secretory meningiomas (n = 14). The aim of the study was to better understand the interaction of mast cells and vessel proliferation in the various subgroups with increased edema formation compared to “common” specimens of the meningioma variety. Furthermore, we tried to determine whether the occurrence of mast cells could serve as a diagnostic criterion for angiomatous meningiomas.

The former morphology was characterized by extended fields of large vessels alternating with isomorphic tumor parts with endotheliomatous differentiation (Figure 1A). In contrast, tumors with microvascular features almost entirely consisted of densely arranged capillary vessels (Figure 1B). Few tumors, however, presented with architectural properties that showed some transition between both histological textures. There was no evidence whatsoever for malignant change in our cohort. Mast cells could be demonstrated by aniline dyes, especially when using the cresyl violet stain (Figure 1C arrows). This procedure obviously depicts some mast cells, but may fail to do so when the characteristic granula are absent or sparse.

Immunostaining for CD 34 yielded a reliable picture of the arrangement of vessels of various diameters, albeit of the macrovascular type (Figure 1D) or else of the presence of abundant small vessels in the microvascular subtype (Figure 1E). The immunoreaction or CD117 reliably detected mast cells, whether loaded with granula or almost depleted of them. Generally there was a considerable mast cells density in most angiomatous meningiomas (Figure 1H), and clusters of mast cells around vessels were frequently found (Figure 1G). The immunologically detected expression of EMA confirmed the typically strong reaction in the meningioma cell membranes (Figure 1F). Immunostaining for CKMN did not reveal any epithelial differentiation. An electron microscopic examination performed in three cases of angiomatous meningiomas revealed normally structured capillaries without any evidence of pericyte proliferation.

Angiomatous meningiomas in our retrospective study contained a significantly higher percentage of mast cells than the unselected specimens (0.32% ± 0.48 vs. 0.13% ± 0.53, p < 0.05). In a previous study, we found a mast cell density of 0.23% in angiomatous meningioma; the corresponding values in an unselected meningioma group were 0.09%. These relations could in general be reproduced in our actual study by slightly changing values. The comparison with the pertinent percent
in the secretory subgroup was 0.7% in the previous and 1.11% in the current investigation [7]. Thus, the general relations were preserved despite the slightly varying counting results (0.32% vs. 0.23%; 0.14% vs. 0.09% and 0.7% vs. 1.11%) [7].

Furthermore, clinical evidence points to increased risk of brain edema (Figure 2) for both, as was also documented in one of our angiomatous cases [7].

We suggest that future clinicopathologic studies should consider the occurrence of mast cells as a diagnostic criterion for angiomatous meningioma. Furthermore, a better understanding of the impact of mast cells upon edema formation could eventually contribute to the implementation of new drugs.

Figure 1. Microscopic findings: H & E staining showing parts of angiomatous meningioma with large vessels and syncytial-endotheliomatous background, macrovascular subtype (A); H & E staining showing parts of angiomatous meningioma with a pseudocystic architecture and abundant small vessels, microvascular subtype (B); staining for cresyl violet with mast cells (marked with arrows), magnification × 400 (C); immunostaining for CD34: absence of large vessels by macrovascular subtype (D) and abundant small vessels by microvascular subtype (E); immunostaining for EMA showing strongly membranous expression (F), arrows mark mast cells in immunostaining for CD117 occasionally clustered around vessels (G) and high proportion to tumor cells (H); arrowheads revealing mast cells with strong CD117 expression, higher magnification, × 1,000 (I).

Figure 2. Axial view of T2-weighted MRI reveals a well-demarcated isointense temporal tumor with severe peritumoral edema (marked with arrows), graded with III in Steinhoff classification [7, 11].
to improve edema treatment by substances such as cromoglycan [8, 9]. Yet, mast cells, which are but one factor in tumorigenesis or progression, also contain several compounds that may act on tissue and/or cells [9]; thus, a rather general approach seems reasonable. We consider it fully justified, therefore, to rely upon histologic findings, as given in this publication, to better understand the intricate correlation of various tissue constituents, such as differing tumor compartments, vessels, connective tissue and the like, to continue or even simplify earlier often extensive subdivisions [10].

Conflict of interest

None of the authors report any conflict of interest or financial disclosure.

References


Correspondence to:
Bartosz Bujan, MD
Department of Neurology, Rehabilitation MedClin Center Bad Orb, Spessartstraße 20, 63619 Bad Orb, Germany
bbujan@gmx.de

Table 1. Mast cell density of meningiomas.

<table>
<thead>
<tr>
<th></th>
<th>Angiomatous meningiomas</th>
<th>Secretory meningiomas</th>
<th>Unselected meningiomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean age, ± SD) (y)</td>
<td>n = 27</td>
<td>57.5 ± 18.1</td>
<td>57.6 ± 11.2</td>
</tr>
<tr>
<td>Sex (male : female)</td>
<td>8 : 19</td>
<td>3:11</td>
<td>7:9</td>
</tr>
<tr>
<td>Mast cell density (%) (mean, ± SD, CI)</td>
<td>0.32 ± 0.48 (0.23 – 0.41)</td>
<td>1.11 ± 0.72 (0.83 – 1.39)</td>
<td>0.13 ± 0.24 (0.00 – 0.27)</td>
</tr>
</tbody>
</table>

± SD = standard deviation; CI = confidence interval 95%; *significant; NS = not significant.