Online Supplemental Appendix to
Online Shopping Intermediaries: The Strategic Design of Search Environments

Anthony Dukes
University of Southern California

Lin Liu
University of Central Florida

February 2, 2015

In this online supplemental appendix, we provide arguments for two claims made in the main article.

SA.1. Evaluation Costs Quadratic in Breadth
The consumer’s evaluation cost function in section 2 specified that search costs are linear in the breadth b but quadratic in depth d. We can show that the main result in Proposition 1 can continue to hold even for a search cost specification that is quadratic in both dimensions.

Proposition SA.1 Suppose the consumer’s evaluations cost is $f(b, d; s) = \tau \left(\frac{b}{n} \right)^2 d^2$. Let $\tau > \mu(n/e)^2$. If $n > e$ then $s^* = 1 - \frac{\mu}{2\tau} (\frac{n}{e})^2 < 1$.

Proof: Let $s \in [0,1]$ be an arbitrary search environment and the consumer’s evaluation objective be a modified version of (B1). Then the consumer’s optimal evaluation plan is

$$
\hat{b}(s) = \begin{cases}
\frac{e}{\mu n^2} & \text{if } s < \bar{s} \\
\sqrt{\frac{2(1-s)\tau}{\mu n^2}} & \text{if } s \geq \bar{s}
\end{cases} \quad \text{and} \quad \hat{d}(s) = \begin{cases}
\frac{\mu n^2}{2(1-s)\tau e^2} & \text{if } s < \bar{s} \\
1 & \text{if } s \geq \bar{s}
\end{cases}
$$

where $\bar{s} = 1 - \frac{\mu n^2}{2\tau e^2}$. Equilibrium prices $\hat{p}(s) = \frac{\mu \hat{d}(s)}{1 - \frac{\mu}{\hat{b}(s)}} = \frac{\mu}{\frac{\mu n^2}{2(1-s)\tau e^2} + \frac{1}{\hat{b}(s)}}$ are clearly decreasing in $s > \bar{s}$ and therefore s^* cannot exceed \bar{s}. When $s < \bar{s}$, equilibrium prices $\hat{p}(s) = \frac{\mu \hat{d}(s)}{1 - \frac{\mu}{\hat{b}(s)}} = \frac{(\mu n)^2}{2(1-s)\tau e^2}$ are increasing in s. This implies that the optimal level of search aids $s^* = \bar{s}$. ■
SA.2. Competing Intermediaries
The two intermediaries are located at the two ends of a Hotelling line. We show that the main result in Proposition 1 remains when the transportation cost \(t \) is sufficiently large. However, when the transportation cost is small, we show that it is optimal for the intermediary to provide full aids \(s^* = 1 \).

Proposition SA.2

(i) When intermediaries are relatively differentiated \(t \geq \bar{t} \equiv \frac{n(e^2 - 1)}{n - e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^2 - 1} \mu \), the equilibrium outcomes are the same as in Proposition 1.

(ii) Otherwise, in equilibrium, the intermediary minimizes search costs in the search environment \((s^* = 1) \). The symmetric equilibrium price is \(\mu \left(\frac{n}{n-1} \right) \).

Proof: We claim that there is a symmetric equilibrium in which both intermediaries set

\[
s_j^* = \begin{cases} 1 - \frac{\mu}{\tau} e^{-2} & t \geq \bar{t} \\ 1 & 0 \leq t < \bar{t}, \end{cases}
\]

where \(\bar{t} \equiv \frac{n(e^2 - 1)}{n - e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^2 - 1} \mu \).

To prove this claim we demonstrate directly that one intermediary, intermediary 1, cannot be more profitable by deviating from \(s_1^* \) given that the other intermediary, intermediary 2, chooses \(s_2^* = 1 \).

(i) Suppose \(t \geq \bar{t} \) and consider any deviation \(s_1 \neq s_1^* = s_2^* = 1 - \frac{\mu}{\tau} e^{-2} \), with the corresponding profits denoted by \(\bar{\pi}_1(s_1) \). Any deviation \(s_1 \in \left[0, 1 - \frac{\mu}{\tau} e^{-2} \right) \) leads to profits

\[
\bar{\pi}_1(s_1) = \frac{1}{2t} \left(\frac{1}{e^2 - 1} \right) \frac{\rho \mu^2}{(1-s_1)\tau} \left[t - \frac{1}{e^2(e^2 - 1)(1-s_1)\tau} + \frac{\mu}{e^2 - 1} \right],
\]

which we show is increasing on this interval. Specifically, \(\frac{\partial \bar{\pi}_1}{\partial s_1} > 0 \) as long as

\[
t > \left[\frac{2\mu}{e^2(e^2 - 1)(1-s_1)\tau} - \frac{1}{e^2 - 1} \right] \mu.
\]

for all \(s_1 \). We have,

\[
t \geq \bar{t} = \frac{n(e^2 - 1)}{n - e^2} \left[\ln(n) - \frac{n}{n-1} + \frac{1}{e^2 - 1} \right] \mu > \frac{\mu}{e^2 - 1} > \left[\frac{2\mu}{e^2(e^2 - 1)(1-s_1)\tau} - \frac{1}{e^2 - 1} \right] \mu.
\]

where the first inequality holds by assumption, the second since \(n > e^2 \), and the third for \(s_1 \in \left[0, 1 - \frac{\mu}{\tau} e^{-2} \right) \). Therefore, any deviation \(s_1 < s_1^* = 1 - \frac{\mu}{\tau} e^{-2} \) is not profitable.

Any deviation \(s_1 \in \left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{\tau} \right) \) leads to

\[
\bar{\pi}_1(s_1) \equiv \frac{1}{2t} \frac{\rho \mu^2}{\mu(1-s_1)\tau} \left\{ t - \frac{\mu^2}{\mu(1-s_1)\tau} + \mu \ln \left[\frac{\mu}{(1-s_1)\tau} \right] - \mu - \left[-\frac{\mu}{1-e^2} + \mu \right] \right\}.
\]
This deviation is not profitable if \(\frac{\partial \pi_1}{\partial s_1} < 0 \), which requires

\[
t > \mu f(s_1) \equiv \left(\frac{\mu}{1-s_1} + \frac{2\mu}{\mu(1-s_1)^2} - \ln \left[\frac{\mu}{(1-s_1)^2} \right] - \frac{1}{e^{2-1}} \right) \mu.
\]

Since \(t > \frac{n(e^2-1)}{n-e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^{2-1}} \mu > (e^2 + \frac{1}{e^{2-1}})\mu = \mu f\left(1 - \frac{\mu}{\tau} e^{-2}\right) \), profits are decreasing near (and to the right of) \(s_1^* \). Note that the function \(f(s_1) \) is strictly increasing in \(s_1 \). Therefore, the condition \(\pi_1^* > \tilde{\pi}(s_1) \) at \(s_1 = 1 - \frac{\mu}{\tau} \), the right endpoint of the interval, is sufficient for \(\pi_1^* > \tilde{\pi}(s_1) \) at any \(s_1 \in \left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{\tau}\right) \). This condition is

\[
\pi_1^* = \frac{\rho \mu}{2} \left(\frac{e^2}{e^2-1} \right) > \left(\frac{\rho \mu}{2t} \right) \left(\frac{n}{n-1} \right) \left[t + \mu \ln(n) - \frac{n}{n-1} \mu + \frac{e^2}{e^{2-1}} \mu - 2\mu \right] = \tilde{\pi}_1(1 - \frac{\mu}{\tau}),
\]

which holds by our assumption \(t > \bar{t} = \frac{n(e^2-1)}{n-e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^{2-1}} \mu \).

Any deviation \(s_1 \in \left(1 - \frac{\mu}{\tau}, 1\right) \) leads to a profit of

\[
\tilde{\pi}_1(s_1) = \left(\frac{\rho \mu}{2t} \right) \left(\frac{n}{n-1} \right) \left[t + \mu \ln(n) - \frac{n}{n-1} \mu + (1 - s_1) n \tau + \frac{\mu}{e^{2-1}} \right],
\]

which is increasing in \(s_1 \) and therefore bounded above by \(\tilde{\pi}(s_1 = 1) \). The condition \(t > \bar{t} = \frac{n(e^2-1)}{n-e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^{2-1}} \mu \) directly implies that

\[
\pi_1^* = \frac{\rho \mu}{2} \left(\frac{e^2}{e^2-1} \right) > \left(\frac{\rho \mu}{2t} \right) \left(\frac{n}{n-1} \right) \left[t + \mu \ln(n) - \frac{n}{n-1} \mu + \frac{\mu}{e^{2-1}} \right] = \tilde{\pi}_1(1) \geq \tilde{\pi}_1(s_1),
\]

for all \(s_1 \in \left(1 - \frac{\mu}{\tau}, 1\right) \).

(ii) Now suppose \(t \leq \bar{t} = \frac{n(e^2-1)}{n-e^2} \ln(n) - \frac{n}{n-1} + \frac{1}{e^{2-1}} \mu \). We first consider any deviation \(s_1 \in \left[0,1 - \frac{\mu}{\tau} e^{-2}\right) \). This leads to a deviation profit of

\[
\tilde{\pi}_1(s_1) = \left(\frac{\rho \mu}{2t} \right) \left(\frac{n}{n-1} \right) \left[t - \frac{\mu}{e^2} \left(\frac{1}{(1-s_1)(e^2-1)} \right) + \mu \left(\frac{n}{n-1} - \ln(n) \right) \right].
\]

Characterizing the shape of this deviation profit function depends on the level of \(t \). We argue that \(\tilde{\pi}_1(s_1) \leq \pi_1^* \) for different three levels of \(t \).

For \(0 < t < \left[\ln(n) - \frac{n}{n-1} \right] \mu \), the expression for the demand at intermediary 1,

\[
\tilde{D}_1 = \frac{1}{2t} \left[t - \frac{\mu^2}{e^2} \left(\frac{1}{(1-s_1)(e^2-1)} \right) + \mu \left(\frac{n}{n-1} - \ln(n) \right) \right] < 0.
\]

So any deviation under this condition is not profitable.

For \(\left[\ln(n) - \frac{n}{n-1} \right] \mu \leq t \leq \left[\ln(n) - \frac{n}{n-1} + \frac{2}{e^{2-1}} \right] \mu \), the derivative \(\partial \tilde{\pi}_1 / \partial s_1 \) has the following property:
Since the derivative is continuous, it means that any maximizer, \(s_1^* \), of \(\pi_1 (s_1) \) in \([0, 1 - \frac{\mu}{\tau} e^{-2}] \) must solve \(\frac{\partial \pi_1}{\partial s_1} = 0 \). This solution is expressed \(s_1^* = 1 - \frac{2}{e^2 - 1} \left\{ e^2 (e^2 - 1) \left[\frac{t}{\mu} - \ln(n) + \frac{n}{n-1} \right] \right\}^{-1} \) and leads to profits

\[
\bar{\pi}_1 (s_1^*) = \pi_1 (s_1^*) = \frac{\rho \mu^2}{\mu - (1 - s_1^* \tau)} \left\{ t + \mu \left[\ln \left(\frac{\mu}{\mu - (1 - s_1^* \tau)} \right) - \frac{\mu}{\mu - (1 - s_1^* \tau)} - 1 - \ln(n) + \frac{n}{n-1} \right] \right\}
\]

It can be shown that

\[
\frac{\partial \pi_1}{\partial s_1} > 0 \iff t < \left\{ \frac{\mu}{(1 - s_1^* \tau)} + \frac{2}{e^2 - 1} \frac{\mu}{\mu - (1 - s_1^* \tau)} - \ln \left[\frac{\mu}{(1 - s_1^* \tau)} \right] - \frac{n}{n-1} + \ln(n) \right\} \mu \equiv \mu f(s_1).
\]

where \(f(s_1) > 0 \) is increasing on \(\left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{n \tau} \right) \).

Suppose \(0 \leq t \leq \left[e^2 + \frac{2}{e^2 - 1} - \frac{n}{n-1} + \ln(n) \right] \mu = \mu f \left(1 - \frac{\mu}{\tau} e^{-2} \right) \). Then \(\frac{\partial \pi_1}{\partial s_1} > 0 \) for all \(s_1 \in \left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{n \tau} \right) \). Thus,

\[
\bar{\pi}_1 (s_1) \leq \bar{\pi}_1 \left(1 - \frac{\mu}{n \tau} \right) = \frac{\rho \mu}{2} \left(\frac{n}{n-1} \right) \left(1 - \frac{\mu}{t} \right)
\]
for all $s_1 \in \left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{n \tau}\right)$. However, by choosing $s_1^* = 1$, intermediary 1 earns $\pi_1^* = \frac{\rho \mu}{2(1-1/n)}$, which exceeds $\bar{\pi}_1 \left(1 - \frac{\mu}{n \tau}\right)$.

Suppose $[e^2 + \frac{2}{e^2 - 1} - \frac{n}{n-1} + \ln(n)]\mu \leq \bar{t} = \frac{n(e^2 - 1)}{n-e^2} \left[\ln(n) - \frac{n}{n-1} + \frac{1}{e^2 - 1}\right] \mu$. Then $\frac{\partial \pi_1}{\partial s_1} < 0$ near $s_1 = 1 - \frac{\mu}{\tau} e^{-2}$. In this case, $\bar{\pi}_1 (s_1)$ is bounded by either $\bar{\pi}_1 \left(s_1 = 1 - \frac{\mu}{\tau} e^{-2}\right)$ or $\bar{\pi}_1 \left(s_1 = 1 - \frac{\mu}{n \tau}\right)$. We know from above that both of these values are exceeded by the profit π_1^*. Hence there is no profitable deviation $s_1 \in \left(1 - \frac{\mu}{\tau} e^{-2}, 1 - \frac{\mu}{n \tau}\right)$.

Finally consider any deviation $s_1 \in \left(1 - \frac{\mu}{n \tau}, 1\right)$. This leads to profits given by

$$
\bar{\pi}_1 (s_1) = \frac{\rho \mu}{2\bar{t}} \left(\frac{n}{n-1}\right) [t - (1 - s_1)n\tau],
$$

which is obviously increasing in s_1. Therefore, choosing $s_1^* = 1$ gives intermediary 1 more profit than any in $s_1 \in \left(1 - \frac{\mu}{n \tau}, 1\right)$. ■