Supplemental Material

High-Performance Radio Frequency Transistors Based on Diameter-Separated Semiconducting Carbon Nanotubes

Yu Cao,\textsuperscript{1,a) Yuchi Che,\textsuperscript{1,a) Jung-Woo T. Seo,\textsuperscript{2,a) Hui Gui,\textsuperscript{3,a) Mark C. Hersam,\textsuperscript{2 and Chongwu Zhou1,b)}

1Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

2Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.

3Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.

a) These authors contributed equally to this work.
b) Author to whom correspondence should be addressed. Electronic mail: chongwuz@usc.edu
Open and short structures for the de-embedding process

Fig. S1 shows the open and short structures for the de-embedding process. The as-shown de-embedding structures remove the parasitic effects from the bonding pads and the fringe capacitances associated with the gate, and provide the upper-limit of the performance for the carbon nanotubes with a refined average diameter of ~1.6 nm.

FIG. S1 (a) Open structure for the de-embedding process. (b) Short structure for the de-embedding process.
Detailed comparisons of this work with reference 11 and 12 in the manuscript

SI: comparisons of nanotube transistors with the same T-shaped gate device structure

<table>
<thead>
<tr>
<th>reference</th>
<th>diameter separation?</th>
<th>semiconducting purity</th>
<th>device structure</th>
<th>channel length (nm)</th>
<th>g_m (μS/μm)</th>
<th>r_o (kΩ·μm)</th>
<th>extrinsic f_t(GHz)</th>
<th>extrinsic f_{max}(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td>Yes, 1.6 nm in average</td>
<td>99%</td>
<td>T-gate</td>
<td>120</td>
<td>55</td>
<td>100</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>No, 1.4 nm in average</td>
<td>99.99%</td>
<td>T-gate</td>
<td>120</td>
<td>40</td>
<td>200</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>No, 1.4 nm in average</td>
<td>98%</td>
<td>T-gate</td>
<td>140</td>
<td>20</td>
<td>60</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>