Black Phosphorus Gas Sensors

Ahmad N. Abbas ‡*, Bilu Liu ‡, Liang Chen ‡, Yuqiang Ma ‡, Sen Cong ‡, Nappodal Aroonyade ‡, Marianne Köpf#, Tom Nilges#, Chongwu Zhou ‡

‡ Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States

¶ Department of Electrical Engineering, University of Jeddah, Abdullah Sulayman St, Jeddah 22254, Saudi Arabia

Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, Garching b. München 485748, Germany

* Email: chongwuz@usc.edu

Supporting Information
Figure S1. Stability of thin BP flake FET. a) I_d-V_g curve of a ~10 nm flake BP FET under a 50 mV V_d before failing. (b) Optical image of the device in (a) after repeated measurements in air showing a breaking point in the BP channel pointed by a red arrow.
Figure S2. Vertical transport in multilayer BP flakes. a, c) Optical microscope image of a vertical FET comprised of a bottom monolayer CVD graphene electrode/BP/top (Ti/Au) electrode with a P++ Si/300 nm SiO$_2$ back gated structure. Dashed line is a guide to the eye of the monolayer CVD graphene border. b, d) I_d-V_G curves for the devices in (a) and (c) respectively under $V_d=0.2$ V.
Figure S3. Repeatability of BP sensor. (a) Relative conductance change ($\Delta G/G_0$) vs. time in seconds for a multilayer BP sensor for a first time sensing and b) For a second time showing similar response to various concentrations of NO$_2$.