Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium-Sulfur (Li-S) Batteries

Jiepeng Rong †, Mingyuan Ge †, Xin Fang †, and Chongwu Zhou *‡

†The Mork Family Department of Chemical Engineering and Materials Science and‡Ming Hsieh Department Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States

Graphene oxide (GO) synthesis

GO used in this study was prepared following a reported method.¹ Briefly, a mixture of concentrated H₂SO₄/H₃PO₄ (360:40 mL) was added to a mixture of graphite (3.0 g) and KMnO₄ (18.0 g). The reaction was kept at 50 °C for 12 h, then cooled to room temperature, and poured into ice (~400 mL) with 3 mL 30% H₂O₂. The product is centrifuged at 4000 rpm for 1 hour, and
the supernatant was decanted away. The GO in the supernatant was washed with water, 30% HCl, and water again using centrifuge.

Sulfur particle synthesis

Sulfur particles in two different sizes used in this study were prepared in different ways. Sulfur particles in the diameters between 1 µm and 10 µm (as shown in Figure 2a,b) were prepared by hand-grounding commercial sulfur powder with pestle and mortar for 5 minutes.

Sulfur particles with smaller diameter (Diameter ~ 500 nm) were synthesized by adding concentrated HCl (0.8 mL, 10 M) to an aqueous solution of Na₂S₂O₃ (100 mL, 0.04 M) with the presence of Polyvinylpyrrolidone (PVP, Mw~ 40,000, 0.02 wt%). After reaction for 2 hours, the sulfur particles were washed with ethanol and water, and dispersed into an aqueous solution.

Ball-milled silicon particle synthesis

Ball-milled silicon particles were obtained by ball-milling metallurgical silicon powder. The ball-mill (MTI Inc.) was typically operated at a grinding speed of 1200 rpm for 5 hours. The ground powder has a dark-brown color.

Sulfur/GO core-shell particle synthesis

Sulfur/GO core-shell particles were synthesized in different ionic aqueous solutions (solution #4 to #9). GO and sulfur particles were first dispersed in the same kind of solution, and then sonicated for 10 minutes, respectively. The two suspensions were mixed together and stirred for 1 hour. The precipitate was collected, and washed with water and ethanol using centrifuge. The product was then dried at 60 °C in air for 12 hours, and denoted as sulfur/GO core-shell particles.
Sulfur/GO core-shell particles synthesized using different ionic solutions showed no obvious difference in morphology under SEM. To minimize the effect of solute compounds on the composition of sulfur/GO core-shell particles, SEM characterization (Figure 2), spectroscopic characterizations (Figure 3) and battery measurements (Figure 4) were all carried out on sulfur/GO core-shell particles prepared using 1 M HCl solution as dispersing medium (solution #4 in Figure 1).

Electrochemical measurements

To prepare the working electrodes, various sulfur-based materials were mixed with carbon black (Super P) and polyvinylidene fluoride binder (8:1:1 by weight) in N-methyl-2-pyrrolidinone to form a slurry. So the weight percentage of sulfur to the total mass of the electrode is about 40% without considering the mass of aluminum substrate. The slurry was then coated onto aluminum foil using a doctor blade and dried at 60 °C for 12 hours to form the working electrodes. 2032-type coin cells were assembled in an argon-filled glovebox using lithium metal as counter electrode. The electrolyte used was lithium bis(trifluoromethanesulfonyl)imide (1 M) in 1:1 v/v 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) containing 1 wt% LiNO₃. Cyclic voltammetry and galvanostatic cycling were then carried out from 1.9 V - 2.6 V versus Li⁺/Li°.
Figure S-1. SEM images of GO dried directly from (a) 1 M HCl solution, and (b) 1 M NH$_3$•H$_2$O solution. Both scale bars correspond to 1 µm.

Figure S-2. Thermal gravimetric analysis (TGA) analysis curve of sulfur/GO core-shell particles recorded in the range of 35 - 400 °C at a heating rate of 1 °C/min, showing sulfur : GO ~ 1:1 by weight.
Figure S-3. Voltage profiles at different current rates of sulfur (a) and sulfur/GO (b).

Figure S-4. Voltage profile of sulfur/GO core-shell at 1 A/g of the 1st, 100th, 500th, and 1000th cycle.
Figure S-5. Galvanic charge-discharge performance and Coulombic efficiency of sulfur/GO at 50 mA/g for 23 cycles.

Figure S-6. (a) Voltage profile between 2.6 V and 1.7 V of sulfur/GO core-shell particles at 1 A/g current density. The results show specific capacity contribution from 1.9V-1.7V in discharge is only 6.5%. In this paper, we used 2.6 V-1.9 V as voltage window for all electrochemical measurements unless otherwise specified. (b) Galvanic charge-discharge performance of sulfur/GO at 1 A/g between 2.6 V to 1.7 V. Specific capacity calculated based on the total weight of sulfur/GO.

Self-discharge Test

We cycled a battery using sulfur/GO core-shell particles as cathode for 9 cycles. Then the battery was rest for one week, and open circuit voltage was continuously measured. After
that, the battery was continued for charge/discharge test. Based on the results, the specific capacity in the 9th discharge is 429 mAh/g, and that in the 10th discharge is 382 mAh/g. The self-discharged capacity in one week is calculated to be \((429 - 382)/429 = 11\%\). Open circuit voltage after one week is decreased from 2.6 V to 2.35 V.

Figure S-7. (a) Voltage profile of sulfur/GO core-shell particles as Li-S battery cathode materials in the 9th and 10th discharge. (b) Open circuit voltage measured over one week between the 9th and 10th cycle.

REFERENCES