1 Unconstrained Optimization

An unconstrained optimization problem is of the form

$$\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & x \in \mathbb{R}^n
\end{align*}$$

(1)

where $x \in \mathbb{R}^n$ is the optimization variable and $f : \mathbb{R}^n \to \mathbb{R}$ is the objective function. We call x^*, a solution to Problem (1) if it satisfies

$$f(x) \geq f(x^*), \quad \text{for all } x \in \mathbb{R}^n.$$

(2)

We also call x^* a **global minimum** of f.

Perhaps, the simplest approach to solving Problem (1) is to do a grid search over \mathbb{R}^n. However, since the complexity of this approach scales exponentially in n, grid search is not tractable for large n. In fact, for many optimization problems, it might not be easy to find a global minimum at all. However, even finding a point x^* such that

$$\exists \epsilon > 0 \quad \text{s.t.} \quad f(x) \geq f(x^*), \quad \text{for all } ||x - x^*|| \leq \epsilon,$$

(3)

may still be valuable for us. Any x^* that satisfies (3) is called a **local minimum** of f. A point x^* being a local minimum means that if we modify Problem (1) by restricting the feasible set to $\{x | ||x - x^*|| \leq \epsilon\}$, then x^* is a solution to the modified problem.
Definition 1 Consider Optimization Problem (1). A point \(x^* \) is called a **strict global minimum** if

\[
f(x) > f(x^*), \text{ for all } x \in \mathbb{R}^n, x \neq x^*,
\]

and a **strict local minimum** if

\[
\exists \epsilon > 0 \text{ s.t. } f(x) > f(x^*), \text{ for all } x \text{ that satisfies } ||x - x^*|| \leq \epsilon, x \neq x^*.
\]

example: \(f_1(x) = x^3 \) and \(f_2(x) = -|x|^3 \) neither have a global minimum nor a local minimum. \(f_3(x) = |x|^3 \) has one local minimum which is also a global minimum.

In this course, we will be studying some of the algorithms that either solve Problem (1) or at least find a local minimum for this problem.

1.1 Optimality Conditions

In solving Problem (1), given a point \(x \), the fundamental question is to determine whether \(x \) is a (strict) local/global minimum. We will show that if the objective function \(f \) in Problem (1) is twice differentiable, then the optimality of a point \(x^* \), necessitates the so called **optimality conditions**

\[
\nabla f(x^*) = 0, \tag{4}
\]

\[
\nabla^2 f(x^*) \succeq 0. \tag{5}
\]

Moreover, if for some \(x^* \) the **Optimality Conditions**

\[
\nabla f(x^*) = 0, \tag{6}
\]

\[
\nabla^2 f(x^*) > 0 \tag{7}
\]

hold, then \(x^* \) is a local minimum. Therefore, Optimality Conditions (6), (7) are **sufficient** for local optimality of \(x^* \).

Theorem 1 Consider Problem (1) and assume \(f \) is twice differentiable. If \(x^* \) is a local minimum of \(f \), then \(x^* \) satisfies Optimality Conditions (4) and (5). Furthermore, if \(x^* \) satisfies Optimality Conditions (6) and (7), then \(x^* \) is a local minimum of \(f \).

Proof:
Suppose x^* is a local minimum. Let $d \in \mathbb{R}^n$ be a unit vector and let $x(\alpha) = x^* + \alpha d$, $\forall \alpha \in \mathbb{R}$.

Note that $x(0) = x^*$. Using the first order Taylor approximation of f around x^*, one can write

$$0 \leq \lim_{\alpha \to 0} \frac{f(x(\alpha)) - f(x^*)}{||x(\alpha) - x^*||}$$

$$= \lim_{\alpha \to 0} \frac{f(x^*) + \nabla f(x^*)^\top (x(\alpha) - x^*) + o(||x(\alpha) - x^*||) - f(x^*)}{||x(\alpha) - x^*||}$$

$$= \lim_{\alpha \to 0} \frac{\nabla f(x^*)^\top (x(\alpha) - x^*) + o(||x(\alpha) - x^*||)}{||x(\alpha) - x^*||}$$

$$= \lim_{\alpha \to 0} \frac{\nabla f(x^*)^\top (x(\alpha) - x^*)}{||x(\alpha) - x^*||}$$

$$= \frac{\nabla f(x^*)^\top d}{||d||},$$

where the first inequality follows from the local minimality of x^*. Now, since this holds for any direction d, it follows that $\nabla f(x^*) = 0$.

In order to prove $\nabla^2 f(x^*) \succeq 0$, we can use the second order Taylor approximation of f to write

$$0 \leq \lim_{\alpha \to 0} \frac{f(x) - f(x^*)}{||x - x^*||^2}$$

$$= \lim_{\alpha \to 0} \frac{\nabla f(x^*)^\top (x - x^*) + \frac{1}{2}(x - x^*)^\top \nabla^2 f(x^*)(x - x^*) + o(||x - x^*||^2)}{||x - x^*||^2}$$

$$= \lim_{\alpha \to 0} \frac{\nabla^2 f(x^*) d}{\alpha^2 ||d||^2}$$

$$= \frac{1}{2} d^\top \nabla^2 f(x^*) d.$$

This inequality holds for any direction d; therefore, $\nabla^2 f(x^*)$ is positive semidefinite.

The proof of the sufficient conditions is similar. (A more rigorous proof would be based on the mean value theorem.)

Note that in a similar manner, the Taylor approximations of order higher that two can also yield other optimality conditions which might be use-
ful in solving more complex problems. Also, note that Optimality Conditions (4), (5) are not sufficient.

Example: \(f(x) = x^3 \) at \(x = 0 \), \(f'(0) = 0 \), \(f''(0) \geq 0 \), but \(x = 0 \) is not a local/global minimum. Sufficient optimality conditions in this case would be

\[
f'(x^*) = 0, \quad f''(x^*) > 0
\]

Remark 1 The optimality conditions are useful because

- they provide tractable conditions for optimality,
- they help narrow down the list of potential solutions,
- they are useful in the design and analysis of algorithms.

1.2 Existence of optimal Solution

Optimization Problem (1) does not always have a solution. For example

1. \(f(x) = x^2 - x^4 \) has no global minimum and two local minima. Note that
 \[
f'(x) = 2x - 4x^3, \quad f''(x) = 2 - 12x^2.
\]

2. \(g(x) = e^{-|x|} \) although satisfies \(\inf_{x \in \mathbb{R}} g(x) = 0 \), it does not have any global minima.

However, there are conditions which guarantee the existence of solution for Problem (1).

Theorem 2 (Bolzano-Weierstrass) Every continuous function \(f \) attains its minimum over any **compact** set \(\mathcal{X} \). In other words, \(\exists x^* \in \mathcal{X} \) s.t. \(f(x^*) = \inf_{x \in \mathcal{X}} f(x) \).

Note that a set is compact if it is closed and bounded. Theorem 2 implies that if the level set \(\{ x \in \mathbb{R}^n | f(x) \leq f(x^0) \} \) is compact, then a global minimum exists.

Definition 2 A function \(f : \mathbb{R}^n \to \mathbb{R} \) is called coercive, if it satisfies

\[
\lim_{|x| \to +\infty} f(x) = +\infty. \tag{8}
\]
It can be shown that if a function \(f \) is coercive and continuous on \(\mathbb{R}^n \), then global minimum exists.

1.3 Unconstrained quadratic optimization

An unconstrained quadratic optimization problem is of the form

\[
\text{minimize } x \in \mathbb{R}^n \quad F(x) := \frac{1}{2} \mathbf{x}^\top \mathbf{Q} \mathbf{x} + \mathbf{b}^\top \mathbf{x},
\]

where, without loss of generality, we assume \(\mathbf{Q} \) is a symmetric matrix. (Note that for any \(\mathbf{Q} \), one can write \(\mathbf{x}^\top \mathbf{Q} \mathbf{x} = \mathbf{x}^\top \frac{\mathbf{Q} + \mathbf{Q}^\top}{2} \mathbf{x} \) where \(\frac{\mathbf{Q} + \mathbf{Q}^\top}{2} \) is a symmetric matrix.) As an illustrative example, we will discuss Optimality Conditions (4), (5) for Problem (9).

- **Necessary conditions**

 \[
 \nabla F(x) = \mathbf{Q} \mathbf{x} + \mathbf{b} = 0, \quad \nabla^2 F(x) = \mathbf{Q} \succeq 0.
 \]

 - if \(\mathbf{Q} \mathbf{x} + \mathbf{b} = 0 \) is not feasible, then \(\inf f(x) = -\infty \).
 - if \(\mathbf{Q} \) is not positive semidefinite, then we can show that it does not have a global minimum. Let \(\mathbf{Q} = \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^\top \) be an eigenvalue decomposition of \(\mathbf{Q} \), where \(\mathbf{u}_i \) are orthonormal and assume \(\lambda_1 < 0 \). One can write

 \[
 \frac{1}{2} \mathbf{x}^\top \mathbf{Q} \mathbf{x} + \mathbf{b}^\top \mathbf{x} = \frac{1}{2} \mathbf{x}^\top \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^\top \mathbf{x} + \mathbf{b}^\top \mathbf{x} = \frac{1}{2} \sum_i \lambda_i (\mathbf{x}^\top \mathbf{u}_i)^2 + (\mathbf{b}^\top \mathbf{u}_1) \mathbf{x}.
 \]

 Now, if we let \(\mathbf{x} = \alpha \mathbf{u}_1 \), then we have

 \[
 \frac{1}{2} \mathbf{x}^\top \mathbf{Q} \mathbf{x} + \mathbf{b}^\top \mathbf{x} = \frac{1}{2} \lambda_1 \alpha^2 + (\mathbf{b}^\top \mathbf{u}_1) \alpha.
 \]

 Clearly, \(F(\alpha \mathbf{u}_1) \) goes to \(-\infty\) as \(\alpha \to +\infty \).

- **Claim:**

 - The above necessary conditions are also sufficient. (Positive definiteness of \(\mathbf{Q} \) is not required in this particular example.)
Any local optimum is also globally optimum (True for any convex optimization).

2 Convexity

There are classes of functions for which any local minimum is also a global minimum. Perhaps the most important of such classes is the class of convex functions.

Definition 3 A function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if it satisfies

\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y), \quad \forall \alpha \in (0, 1), \ x, y \in \mathbb{R}^n. \tag{10}
\]

Moreover, \(f \) is called strictly convex if the inequality in (10) is strict for any \(x \neq y \).

Convexity of a function means that any line segment connecting two points in the graph of function should lie above the graph. It can be shown that a continuous function is convex if and only if

\[
f(y) \geq f(x) + \nabla f(x)^\top(y - x), \quad \forall x, y.
\tag{11}
\]

This means that for any \(x \in \mathbb{R}^n \), the graph of linear approximation of a convex function \(f \) around \(x \) should lie below the graph of \(f \).

Definition 4 For any set \(A \subset \mathbb{R}^n \), the indicator function associated to \(A \) is defined as

\[
I_A(x) := \begin{cases}
0 & \text{if } x \in A, \\
+\infty & \text{otherwise}.
\end{cases}
\]

Definition 5 A set \(S \subset \mathbb{R}^n \) is convex if \(I_S \) is convex.

An equivalent definition for a convex set \(S \) would be

\(S \) is convex if \(x, y \in S \Rightarrow \gamma x + (1 - \gamma)y \in S, \ \forall \gamma \in [0, 1] \).
Definition 6 The optimization problem

\[
\min_x f(x) \quad \text{subject to } x \in X
\]

is convex if \(f \) is a convex function and \(X \) is a convex set.

Remark 2 Note that

- If \(f \) is twice continuously differentiable, then
 \[
 f \text{ is convex } \iff \nabla^2 f(x) \succeq 0, \quad \forall x.
 \]

 This follows from the fact that a function \(f \) is convex if and only if the restriction of \(f \) to any direction \(d \) starting at any point \(x_0 \), defined as
 \[
 f_{d,x_0}(t) := f(x_0 + td),
 \]
 is convex.

- For convex optimization problems, local optimality implies global optimality.

 Simply, let \(x \) and \(y \) be two local minima. The line segment connecting \(x \) and \(x \) passes through the balls \(\{z \mid \|z - x\| \leq \epsilon\} \) and \(\{z \mid \|z - y\| \leq \epsilon\} \) for any \(\epsilon > 0 \). Therefore, neither \(f(x) < f(y) \) nor \(f(y) < f(x) \). This implies that any two local minima have the same objective value.

- The set of solutions of a convex optimization problem is convex.
 (The proof is straightforward using Definition 3.)

- If the objective function is strictly convex, then the minimum is unique.

Example:

\[
\text{minimize } f(x, y) = \frac{1}{2}(\alpha x^2 + \beta y^2) - x \quad \text{subject to } (x, y) \in \mathbb{R}^2.
\]

The Hessian is

\[
\nabla^2(x, y) = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}.
\]
• \(\alpha, \beta > 0 \implies \) strict convexity, \((x^*, y^*) = \left(\frac{1}{\alpha}, 0 \right)\).

• \(\alpha = 0, \beta > 0 \implies \) convexity, there is not local/global minima.

• \(\alpha > 0, \beta = 0 \implies \) convexity (not strictly), \((x^*, y^*) = \left(\frac{1}{\alpha}, y \right), y \in \mathbb{R} \).

• \(\alpha > 0, \beta < 0 \implies \) non-convexity.