Large Scale Optimization for Machine Learning

Meisam Razaviyayn
Lecture 12
razaviya@usc.edu
Agenda

• Review

• Regularization

• Cross validation
 • Parameter tuning
 • Termination criteria of optimization algorithms

• Structure of ERM
Recap: Empirical Risk Minimization

Predicting an output $y \in \mathcal{Y}$ given an input $x \in \mathcal{X}$, e.g., $\mathcal{X} = \mathbb{R}^d, \mathcal{Y} \in \{0, 1\}$

Set of hypotheses: \mathcal{H} with $h \in \mathcal{H}$ maps \mathcal{X} to \mathcal{Y}

Loss function: $\ell : (\mathcal{X} \times \mathcal{Y}) \times \mathcal{H} \mapsto \mathbb{R}$

Data generating distribution \mathbb{P}^* with $(x, y) \sim \mathbb{P}^*$

Expected risk/Test error: $L(h) \triangleq \mathbb{E}_{\mathbb{P}^*} [\ell((x, y), h)]$ \hspace{2cm} $h^* \in \arg \min_{h \in \mathcal{H}} L(h)$ \hspace{1cm} *Best we can hope for*

Training samples: $(x_1, y_1), \ldots, (x_n, y_n)$

Empirical risk/Training error: $\hat{L}(h) \triangleq \frac{1}{n} \sum_{i=1}^{n} \ell((x_i, y_i), h)$ \hspace{2cm} $\hat{h} \in \arg \min_{h \in \mathcal{H}} \hat{L}(h)$ \hspace{1cm} *Empirical Risk Minimizer*

Expected risk of ERM: $L(\hat{h})$
Recap: What Set of Hypotheses?

Trade-offs between “number of samples”, “Expected risk or ERM”, “Complexity of hypothesis class”

Occam's razor (William of Ockham)
Recap: What Set of Hypotheses?

There are different ways of measuring complexity of a hypothesis class, but in general this trade-off exists
Regularization

• Example: regression

\[\mathcal{H} = \{ h(x) = w^T x \mid w \in \mathbb{R}^d \} \]

\[\min_w \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

\[\mathcal{H} = \{ h(x) = w^T x \mid \|w\|_2^2 \leq \beta \} \]

\[\min_w \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

s.t. \[\|w\|_2^2 \leq \beta \]

\[\min_w \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2 \]
Regularization

- **Goal**: reducing generalization error (expected risk) by reducing the complexity of \mathcal{H}

Empirical Risk Minimization

$$\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell((x_i, y_i), h)$$

Regularized Empirical Risk Minimization

$$\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell((x_i, y_i), h) + \lambda \mathcal{R}(h)$$

- Examples: Tikhonov regularization, total variation (TV) regularization, ...

- What happens if we heavily regularize?

- How to
 - Find the correct regularizer?
 - Find the correct hypotheses class \mathcal{H}?
Cross Validation

• **Goal**: avoiding over/under fitting

• **Strategy**: leave some of your data for the evaluation of your fitted model \hat{h}

Popular Cross Validation Strategies:

• K-fold cross validation
 • Partition the samples to K partitions
 • Use K-1 partitions for training and one for validation
 • Repeat K times over all partitioning and take the average

• Leave-m-out
 • Choose m out of n samples and use them for validation and the rest for training
 • Repeat over all $C(n,m)$ partitions and take the average (or randomly select)
 • Case m=1 is equivalent to n-fold cross validation → Leave-one-out

• Slightly biased, but still very helpful!
Cross validation can be used for:

• Choosing model fitting strategy
 • Example: SVM or logistic regression

• Type of regularization
 • Example: L_2 or L_1 norm

• Weight of the regularizer

• Stopping criteria

• Many other examples
Remarks

Regularization reduces model complexity

How to estimate expected risk and select models? Cross Validation!

Structure of ERM$	ext{s}$

- Summation/expectations in the objective
 - Stochastic optimization
 - Online optimization
 - Incremental methods

- Large number of blocks
 - Block optimization methods

\[
\min_w \sum_{i=1}^{n} (w^T x_i - y_i)^2
\]

\[
\min_w \sum_{i=1}^{n} \left(\log \left(1 + \exp(w^T x_i)\right) - y_i w^T x_i \right)
\]

\[
\min_{w,v} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (w^T x_i + v) \right\} + \lambda \|w\|_2^2
\]
Stochastic Optimization Framework

\[h^* = \arg \min_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim \mathcal{P}^*} [\ell((x, y), h)] \quad \hat{h}_n = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell((x_i, y_i), h) \]

\[w^* = \arg \min_w \mathbb{E}_\xi [\ell(\xi, w)] \quad \hat{w}_n = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} \ell(\xi_i, w) \]

Different names: Empirical Risk Minimization, Sample Average Approximation

Assumption: Uniqueness of minimizer

What is the relation between the optimal \(w^* \) and estimated \(\hat{w}_n \)?
Sample Average Approximation (SAA)

\[w^* = \arg \min_w \mathbb{E}_\xi [\ell(\xi, w)] \]

\[\hat{w}_n = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} \ell(\xi_i, w) \]

- For any fixed \(w \), Law of large number implies

\[\hat{L}_n(w) \to L(w) \text{ as } n \to \infty \text{ almost surely} \]

- Under some regularity conditions, by uniform convergence of LLN:

\[\hat{w}_n \to w^* \text{ as } n \to \infty \text{ almost surely} \]
Sample Average Approximation (SAA)

\[
\begin{align*}
 w^* &= \arg \min_w E_\xi [\ell(\xi, w)] \\
 L(w) &= \frac{1}{n} \sum_{i=1}^{n} \ell(\xi_i, w) \\

 \nu^* &= \min_w L(w) \\
 \nu_n &= \min_w \hat{L}_n(w)
\end{align*}
\]

- Under some regularity conditions, by LLN: \(\nu_n \rightarrow \nu^* \)

Theorem: For all \(n \geq 1 \), \(E[\nu_n] \leq E[\nu_{n+1}] \)

Training error is typically an under-estimator of the test error

Proof?
SAA: Rate of Convergence

\[w^* = \arg \min_w L(w) \]
\[\hat{w}_n = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} \ell(\xi_i, w) \]

Assume a strongly convex quadratic objective

\[\hat{w}_n = \arg \min_w \hat{L}_n(w^*) + (w - w^*)^T \nabla \hat{L}_n(w^*) + \frac{1}{2}(w - w^*)^T \nabla^2 \hat{L}_n(w^*)(w - w^*) \]

\[\Rightarrow \sqrt{n}(\hat{w}_n - w^*) = - \left(\nabla^2 \hat{L}_n(w^*) \right)^{-1} \left(\sqrt{n} \nabla \hat{L}_n(w^*) \right) \]

\[\Rightarrow \sqrt{n}(\hat{w}_n - w^*) \rightarrow \mathcal{N}(0, H^{-1} \Sigma H^{-1}) \]

Slutsky’s theorem

Want Hessian with large eigenvalues \(\Rightarrow\) Another justification for regularization

Also true for general case (under some regularity condition)