Chemical reactions are always accompanied with a change in energy. It takes energy to make or break chemical bonds.

Expressions of Energy

\[U(T, V) \at \text{Const. } V \quad \Delta U = q_V \]

\[H(T, P) \at \text{Const. } P \quad \Delta H = q_P \]

Interconversion between \(\Delta U \) and \(\Delta H \)

\[\Delta H_{\text{rxn}} = \Delta U_{\text{rxn}} + (\Delta n_{\text{gas}}) RT \]

Assume:
- \(\Delta (PV) \) is neglected for solids and liquids
- Gases are ideal

Then \(\Delta n_{\text{gas}} = n_{\text{p}} \text{ (products)} - n_{\text{r}} \text{ (reactants)} \)

Example:

\[\text{H}_2(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{H}_2\text{O}(g) \text{ at } 298K \text{ (assume ideal gas)} \]

\[\Delta H_{298}^\circ - \Delta U_{298}^\circ = \Delta n_{\text{gas}} RT \]

\[\Delta n_{\text{gas}} = 1 - 1 - \frac{1}{2} = -\frac{1}{2} \quad \text{answer is negative} \]
For a rxn to be...

[Chemical Structures]

endothemic \[\Delta h > 0 \]

exothermic \[\Delta h < 0 \]

Consider a general Rxn

\[n_a A + n_b B + \ldots \rightarrow v_x X + v_y Y + \ldots \]

\[\Delta_r f^\circ = \sum_i v_i \Delta f^\circ_{i, Produkte} - \sum_i v_i \Delta f^\circ_{i, Reaktionen} \]

Example: Find the expression for the enthalpy change of the following rxn:

\[\text{CaCO}_3(s) \xrightarrow{\Delta} \text{CaO}(s) + \text{CO}_2(g) \]

\[\Delta h_r = \Delta f^\circ_{\text{CaO}(s)} + \Delta f^\circ_{\text{CO}_2(g)} - \Delta f^\circ_{\text{CaCO}_3(s)} \]

\[\text{HCl}(g) \rightarrow H^+(aq) + Cl^-(aq) \]

\[\Delta h_r = \Delta f^\circ_{H^+(aq)} + \Delta f^\circ_{Cl^-(aq)} - \Delta f^\circ_{\text{HCl}(g)} \]

Enthalpy of formation

Enthalpy change in which the only reaction product is 1 mol of the species of interest

a) Element \(\rightarrow \) molecule

Standard Reference State (s) implies: gas Partial pressure 1 bar

liquid & Solid Pure substance at 1 bar

Solution in Solution

Temperature is 298.15K
Hess's Law

ΔH is path independent, therefore the enthalpy change for any sequence of reactions that sum to the same overall reaction has the same value.

Example: Consider the reaction of graphite to diamond

\[C(s, \text{graphite}) \rightarrow C(s, \text{diamond}) \]

\[\Delta H_1 \]

\[C(s, \text{diamond}) + O_2(g) \rightarrow CO_2(g) \quad \Delta fH_2 \]

\[\Delta H_1 - \Delta H_2 = \Delta fH \]

Temperature Effects on Enthalpy

Suppose we want to carry out a run at a temperature other than 298.15 K. How can we relate ΔH° to ΔH at this new temperature?

\[\Delta H(T_{\text{new}}) = \Delta H^\circ(298.15 K) + \int_{298.15 K}^{T_{\text{new}}} \Delta C_p(T') dT' \]

Where \[\Delta C_p(T') = \sum_i \Delta C_p(T')_{(\text{products})} - \sum_i \Delta C_p(T')_{(\text{reactants})} \]
Energy and Stability

Molecular Stability is proportional to -(Bond enthalpy)

More Stable \(\Rightarrow \) Lower Molecular Energy \(\Rightarrow \) Higher \(H_b \)

Less Stable \(\Rightarrow \) Higher Molecular Energy \(\Rightarrow \) Lower \(H_b \)

i.e) Not stable \(\Rightarrow \) Weak bond \(\Rightarrow \) Small \(H \) (or \(U \))

Example

Given the average Standard bond enthalpy

of C-C is: \(H_b^\circ (C-C) = 348 \text{ KJ/mol} \)

Determine the following relations for bond enthalpy

Using \(>, < \) or \(= \)

Cyclopropane

\(H_b \leq H_b^\circ (C-C) \)

Ring Strain \(\Rightarrow \) Less Stable

Benzene

\(H_b > H_b^\circ (C-C) \)

Bond Conjugation \(\Rightarrow \) more Stable