Chem 1038 Week 1

TA: Pamela (Pam) Schleissner
Email: Pschleiss@ucsc.edu
Website: Pschleiss.sites.ucsc.edu (Section notes under Teaching Tab)
Office Hour: Tues 4-5 This week in PSB 357. Stay tuned for longer Room location

Outline

- Chapter 1 definitions/basic concepts
 - Zeroth Law
 - Ideal gas
 - Real gas/Van der Waals
- Chapter 2
 - Internal Energy
 - Heat
 - Work
 - More definitions

Chapter 2 - Definition/basic concepts

```
<table>
<thead>
<tr>
<th>Types of Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Open System</strong></td>
</tr>
<tr>
<td>Both energy and matter are exchanged freely.</td>
</tr>
</tbody>
</table>

| **Closed System** |
| Energy exchanged freely but matter does not go in or out. |

| **Isolated System** |
| Energy and matter do not exchange. |
```
Definition of State Variables - properties whose values are required to specify the state of a System

Types of State Variables

- Pressure
 - Collision of molecules / Change of linear momentum
 - Measured with a barometer
 $P = \frac{F}{A}$ Units of Pa, atm, bar, Torr, etc. (See Table 1)

- Temperature
 - Quantitative measurement of the average kinetic energy of a system
 - Thermodynamics uses an absolute temperature scale in units Kelvin
 $T(K) = T(°C) + 273.15$

- Volume
 - Spatial description of System
 - Measured with ruler, S.I. unit L or dm³

 Extensive and Intensive Properties/Variables

- Property does not depend on size or extent of system
 - e.g.) P and T

- Property depends on size or extent of system
 - e.g.) V

Equilibrium

- When the system and surroundings have equal state variables
 - e.g.) P, T, V

 → Thermal Equilibrium - Equal Temperature

 → Thermodynamic Equilibrium - P, T, V are in equilibrium
Zerotn Law of Thermodynamics

Two systems that are separately in equilibrium with a third system are also in thermal equilibrium with one another.

\[A \iff B \iff C \]

i.e. Volume is zero

Ideal gas

- Assume all gases are the same point mass and are not interacting with each other. All collisions are assumed elastic.
- Ideal gas expression: \[PV = nRT \] or \[P \cdot V = n \cdot R \cdot T \] where \[\Delta V = \frac{V}{n} \]
- Here \(R \) is a proportionality constant between the state variables.
 \[R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1} \]
- For a monatomic ideal gas \(KE = \frac{3}{2} nRT \) only depends on \(T \)

Real gases/Van der Waals

Van der Waals equation: \((P + \frac{a}{V^2})(V - b) = nRT \)

- Corrects for actual volume/mass
- Corrects for attractive forces
- Corrects for repulsive forces

Conceptual Question

The parameter \(a \) in the Van der Waals equation is greater for \(H_2O \) than for \(He \). What does this say about the form of the potential function for the two gases?

A: If \(a_{H_2O} > a_{He} \) then \[|\Delta V(r)_{H_2O}| > |\Delta V(r)_{He}| \]
Why (on the basis of electronic structure) is a in the van der Waals equation greater for H2O than for He?

A: H2O is a polar molecule. Dipole-Dipole Interactions will create attractions between H2O molecules. Hence "a" is greater for polar H2O than non-polar He.

Chapter 2

<table>
<thead>
<tr>
<th>State function VS. Path function</th>
</tr>
</thead>
<tbody>
<tr>
<td>differential symbol</td>
</tr>
<tr>
<td>Change of value dependent on form?</td>
</tr>
<tr>
<td>Value of cyclic integration</td>
</tr>
<tr>
<td>Calculate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>dM (exact differential)</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Path</td>
</tr>
<tr>
<td>∫M = 0</td>
</tr>
<tr>
<td>Final Initial</td>
</tr>
<tr>
<td>∫dM = M(final) - M(initial)</td>
</tr>
</tbody>
</table>

1st Law of Thermodynamics

\[ΔU = q + w \]

U := Internal Energy state function
q := heat
w := work

If heat flows to surrounding, then q < 0
If heat flows to system, then q > 0

If work is done by the system, w < 0
If work is done to the system, w > 0
Heat

\[dq_b = C_dT \Rightarrow q_b = C \Delta T = C(T_e - T_i) \]

- \(C \) is heat capacity
- \(\Delta \) is value change of a state function, always:
 \(\text{Value (final state)} - \text{Value (initial state)} \)
- \(q_b \) is heat, non-state function

For a monatomic ideal gas

at const. \(V \)

\[q_V = C_v \Delta T = \frac{3}{2} nR \Delta T \Rightarrow C_v = \frac{3}{2} nR \text{ or } \overline{C_v} = \frac{3}{2} R \]

at const. \(P \)

\[q_P = C_p \Delta T = \frac{5}{2} nR \Delta T \Rightarrow C_p = \frac{5}{2} nR \text{ or } \overline{C_p} = \frac{5}{2} R \]

Work

\[W = - \int_{V_i}^{V_f} P_{ext} dV \]

Where \(P_{ext} = \) external pressure

Important key words from Chapter 2

Isochoric: \(\text{Const. } V \Rightarrow \Delta V = 0 \Rightarrow W = 0 \)

Isobaric: \(\text{Const. } P \Rightarrow \Delta P = 0 \)

Isothermal: \(\text{Const. } T \Rightarrow \Delta T = 0 \Rightarrow \Delta U = 0 \rightarrow q = w \)

Isolated: \(q = 0 \), \(W = 0 \)

Adiabatic: \(q = 0 \)

Reversible: \(P_{ext} = P_{int} \)

Free expansion or:

\(P_{ext} = 0 \Rightarrow W = 0 \)