PIB

1 Particle
Potential was zero
\(N \rightarrow 0 \)

As \(n \uparrow \), \(\Delta E \uparrow \)

Harmonic Oscillator

2 particles reduced to one particle eq

\(n \) Can be zero (ZPE)

\(\Delta E = \hbar \nu \) for all \(n \)

Anharmonic Oscillator

Potential is parabolic close to equilibrium but quickly deviates from parabolic as bond length moves away from equilibrium.

As \(n \uparrow \), \(\Delta E \downarrow \)

Harmonic Oscillator

Bond between particles is analogous to a classical spring ⇒ bond does not break.

1. **Boundary Conditions**:
 - \(x \) ranges from \(-\infty \) to \(+\infty \)
 - Since \(\psi(x) \) is a state function, \(\psi(\pm \infty) = 0 \)

2. **Potential**:
 - \(V = V(x) = \frac{1}{2} k x^2 \)
 - \(k \) = force constant
 - \(\nu \) = frequency of vibration
 - \(\omega = \frac{\nu}{\sqrt{\mu}} \) (Hz)
 - \(\omega = \frac{1}{2 \pi} \sqrt{\frac{k}{\mu}} \) (cm\(^{-1}\))

3. **Hamiltonian**:
 - \(H = \hat{\mathbf{r}} + \hat{\mathbf{p}} = -\hbar^2 \frac{d^2}{dx^2} + \frac{1}{2} k x^2 \)

4. **Schrodinger Eq**:
 - \[-\hbar^2 \frac{d^2 \psi(x)}{dx^2} + \frac{1}{2} k x^2 \psi(x) = E \psi(x) \]

5. **Energies**:
 - \(E_n = \hbar \nu \left(n + \frac{1}{2} \right) \)
 - \(E(n) - E(\infty) = h \nu \left(\frac{n}{2} - \frac{1}{2} \right) = h \nu \)
7. Wavefunctions
\[\psi_n(x) = N_n H_n(\alpha^{1/2} x) e^{-\frac{\alpha x^2}{2}}\]
\(\alpha \approx \frac{1}{2}\) as \(x \to \infty\)

Where: \(N_n\) is the normalization constant,
\(H_n(\alpha^{1/2} x)\) is the Hermite polynomial,
\(\alpha^2 = \frac{k_B T}{\hbar^2}\)

E.g.: \(\psi_0(x) = (\frac{\alpha}{\pi})^{1/4} e^{-\frac{\alpha x^2}{2}}\)
\(\psi_1(x) = (\frac{4\alpha^3}{\pi})^{1/4} x e^{-\frac{\alpha x^2}{2}}\)

All spectroscopic observations must obey selection rules.

E.g.) **Harmonic Oscillator** — Only transitions between adjacent energy states are allowed \((\Delta E = h\nu)\)

Anharmonic Oscillator

- \(D_e\): Dissociation Energy
- \(D_0\): Potential well depth

\[V(x) = \frac{1}{2} k x^2 + \frac{1}{2} \delta_3 x^3 + \frac{1}{24} \delta_4 x^4 + \cdots\]

Potential

Enthalpies

\[\Delta H_n = E(n) = \tilde{\omega}_0 (n + \frac{1}{2}) - \frac{\hbar \tilde{\omega}_0}{2} (n + \frac{1}{2})^2\]

\(n = 0, 1, 2, \ldots\)
\(\tilde{\omega} = \) fundamental frequency in wavenumbers
\(\zeta = \) anharmonicity constant

Selection Rules for anharmonic oscillator

\(\Delta n \text{ is allowed to be } \pm 1, \pm 2, \pm 3\)