Math Review

* Derivatives
* Integrals
 - Integration by parts
* Complex Numbers
 - Euler's Formula
* Differential Equations
 - Guess and Check Method
 - Separation of Variables
* Matrices
 - Transpose
 - Determinants
 - Complex conjugate
 - Hermitian Matrix

Derivatives

Expression representing the rate of change of a function with respect to an independent variable

How to compute:

\[
\frac{d}{dx} x^n = n x^{n-1}
\]

\[
\frac{d}{dx} \ln x = \frac{1}{x}
\]

\[
\frac{d}{dx} \sin x = \cos x
\]

\[
\frac{d}{dx} e^x = e^x
\]
Rules to Remember: ① Product Rule ② Quotient Rule ③ Chain Rule

Also must know how to compute partial derivatives

Suppose we have the following function:
\[f(x,y) = 4x \sin(y^2) - \frac{2x^2}{e^{y^2}} \]

What is \(\frac{df(x,y)}{dx} \), \(\frac{df(x,y)}{dy} \), \(\frac{d^2f(x,y)}{dydx} \)?

\[
\frac{df(x,y)}{dx} = 4\sin(y^2) - \frac{4x}{e^{y^2}} = 4\sin(y^2) - 4xe^{-y^2}
\]

\[
\frac{df(x,y)}{dy} = 8xy \cos(y^2) + x^2 e^{-y^2}
\]

\[
\frac{d^2f(x,y)}{dydx} = \frac{d}{dy} \left[\frac{df(x,y)}{dx} \right] = \frac{d}{dy} \left[4\sin(y^2) - \frac{4x}{e^{y^2}} \right] = 8y \cos(y^2) + 2xe^{-y^2}
\]

Integration (a.k.a. The antiderivative)

From the fundamental theorem of calculus

\[
\int_a^b f(x) \, dx = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)
\]

This is the general way to compute an integral

Example) \[
\int_2^3 x^2 \, dx = \frac{1}{3} x^3 \bigg|_2^3 = \frac{1}{3} (27 - 8) = \frac{1}{3} (19)
\]

Note: \[
\frac{d}{dx} \left[\frac{1}{3} x^3 \right] = x^2 \Rightarrow F'(x) = f(x)
\]
Evaluate the following integral
\[\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \]

Recall \(\cos^2 x + \sin^2 x = 1 \)

\[\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx = \int_{0}^{\frac{\pi}{2}} 1 - \sin^2 x \, dx \]

Note: \(\cos(2x) = 1 - 2\sin^2 x \implies \frac{1}{2} \cos(2x) + \frac{1}{2} = 1 - \sin^2 x \)

\[= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \cos(2x) + \frac{1}{2} \, dx \]

\[= \frac{1}{2} \left[\left. \frac{1}{2} \sin(2x) + x \right|_{0}^{\frac{\pi}{2}} \right] \]

\[= \frac{1}{2} \left[\left. \frac{1}{2} \sin(2\pi) + \frac{\pi}{2} \right] - \left(\frac{1}{2} \sin(0) + 0 \right) \right] \]

\[= \frac{1}{2} \left[\frac{\pi}{2} \right] = \frac{\pi}{4} \]

Integration by parts

Protocol for integrating two functions at once

Let \(U(x) \) and \(V'(x) \) be functions. Then the integral of \(U(x)V'(x) \)

Can be solved using the following

\[\int_{a}^{b} U(x)V'(x) \, dx = U(x)V(x) \bigg|_{a}^{b} - \int_{a}^{b} U'(x)V(x) \, dx \]
(Example) Evaluate the following integral

\[\int_{0}^{\frac{\pi}{4}} (x+1)\sin x \, dx \]

Let \(u(x) = x + 1 \) \(v(x) = \sin x \)

\[u'(x) = 1 \quad v(x) = -\cos x \]

\[\int_{0}^{\frac{\pi}{4}} (x+1)\sin x \, dx = \left. (x+1)(-\cos x) \right|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} 1(-\cos x) \, dx \]

\[= \left. (-x\cos x - \cos x) \right|_{0}^{\frac{\pi}{4}} + \int_{0}^{\frac{\pi}{4}} \cos x \, dx \]

\[= -x\cos x - \cos x + \sin x \int_{0}^{\frac{\pi}{4}} \]

\[= -\frac{\pi}{4} \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} + \left[0 + 1 + 0 \right] \]

\[= -\frac{\pi}{4} \frac{\sqrt{2}}{2} + 1 = 1 - \frac{\pi\sqrt{2}}{8} \quad \text{or} \quad 1 - \frac{\pi}{4\sqrt{2}} \]
Complex Numbers

All complex numbers contain an imaginary component i. In complex field, anything goes $i = \sqrt{-1} \Rightarrow \sqrt{-4} = \pm 2i$

| Complex z in polar coordinates $\sqrt{4} = \pm 2$
| \[z = x + iy = re^{i\theta} \]
| Complex Conjugate
| \[\bar{z} = x - iy = re^{-i\theta} \]

Note
\[z \cdot \bar{z} = (x + iy)(x - iy) = x^2 + y^2 \]
and
\[z \cdot \bar{z} = (re^{i\theta})(re^{-i\theta}) = r^2 \]
Therefore
\[r^2 = x^2 + y^2 \Rightarrow r = \sqrt{x^2 + y^2} \]

Polar coordinates can be expressed in sines and cosines
\[z = r\cos(\theta) + ir\sin(\theta) = re^{i\theta} \]
\[\Rightarrow e^{i\theta} = \cos(\theta) + isin(\theta) \]
\[\text{Euler's formula} \]
\[\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{r \sin(\theta)}{r \cos(\theta)} = \frac{x}{y} \]
Differential Equations

Equation that relates some function with its derivatives

Ordinary - vs. Partial -

only one independent variable

Partial - More than one independent variable:

e.g.) \(\frac{\partial^2 U(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 U(x,t)}{\partial t^2} \)

Wave equation. Eq. 2.1 in book

Guess and Check Method

Procedure

1. Collect variables of same kind and move to same side
2. Guess a solution
 (usually \(e^{\alpha x} \) where \(\alpha \) is a constant. Sometimes we guess a linear function (\(f(x) = mx + b \) for \(\frac{\partial^2 y}{\partial x^2} = 0 \))
3. Solve for the constant \(\alpha \)
4. Construct the general solution
 \(y(x) = C_1 e^{\alpha x} + C_2 e^{-\alpha x} \)
5. Solve for the coefficients using the boundary conditions
Example: find a solution to the following differential equation with the given boundary conditions

\[\frac{d^2y(x)}{dx^2} = y'(x) = -5y(x) \quad y(0) = 1 \]

\[y' = -5y \]

1. \(y'(x) + 5y(x) = 0 \)
2. Guess \(y(x) = Ce^{\alpha x} \)

\[y'(x) = C\alpha e^{\alpha x} \]

3. Plug in to solve for \(\alpha \)

\[C\alpha e^{\alpha x} + 5Ce^{\alpha x} = 0 \]

\[Ce^{\alpha x}(\alpha + 5) = 0 \]

\(e^{\alpha x} \) can never be zero. \(C \) can be zero but that solution is trivial.

\[\Rightarrow \alpha + 5 = 0 \quad \Rightarrow \quad \alpha = -5 \]

4. Construct the general solution

\[y(x) = Ce^{-5x} \]

5. Solve for coefficients using boundary conditions \(y(0) = 1 \)

\[Ce^{-5(0)} = 1 \quad \Rightarrow \quad C = 1 \]

\[\therefore \text{Solution is } y(x) = e^{-5x} \]
Example: Solve the following

\[\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = 0 \quad \quad x(0) = A \]
\[x'(0) = 0 \]

1. done already \[\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = 0 \]

2. Guess \[x(t) = Ce^{\alpha t} \Rightarrow x'(t) = C\alpha e^{\alpha t} \Rightarrow x''(t) = C\alpha^2 e^{\alpha t} \]

3. Solve for \(\alpha \)

\[C\alpha^2 e^{\alpha t} + \omega^2 Ce^{\alpha t} = 0 \]
\[Ce^{\alpha t} (\alpha^2 + \omega^2) = 0 \]
\[\alpha^2 + \omega^2 = 0 \quad \Rightarrow \quad \alpha^2 = -\omega^2 \quad \Rightarrow \quad \alpha = \pm i\omega \]

4. Construct the general solution

\[x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t} \]

5. Solve for \(C_1 \) and \(C_2 \)

\[x(0) = A \quad \text{and} \quad x'(0) = 0 \]
\[x(0) = C_1 e^{i\omega(0)} + C_2 e^{-i\omega(0)} = A \]
\[C_1 + C_2 = A \]
\[x'(t) = C_1 i\omega e^{i\omega t} - C_2 i\omega e^{-i\omega t} \]
\[x'(0) = C_1 i\omega e^{i\omega(0)} - C_2 i\omega e^{-i\omega(0)} = 0 \]
\[i\omega (C_1 - C_2) = 0 \quad \Rightarrow \quad C_1 = C_2 \]

\[2C_1 = A \]
\[C_1 = \frac{A}{2} \]
\[C_2 = \frac{A}{2} \]

\[x(t) = \frac{A}{2} e^{i\omega t} + \frac{A}{2} e^{-i\omega t} \]

\[x(t) = A cos(\omega t) + \frac{A}{2} i sin(\omega t) + \frac{A}{2} i sin(\omega t) - \frac{A}{2} i sin(\omega t) \]

\[x(t) = A \cos(\omega t) \]
This type of solution is ideal for Euler's formula
\[e^{\pm \text{i} \omega t} = \cos \omega t \pm \text{i} \sin \omega t \]

\[\Rightarrow X(t) \text{ can be written as} \]
\[X(t) = C_3 \cos \omega t + iC_4 \sin \omega t \]
and \[X'(t) = -\omega C_3 \sin \omega t + i\omega C_4 \cos \omega t \]

(5) Solve for \(C_3 \) and \(C_4 \) when \(x(0) = A \) and \(x'(0) = 0 \)

\[x(0) = C_3 \cos \omega (0) + iC_4 \sin \omega (0) = A \]

\[C_3 = A \]

\[x'(0) = -\omega C_3 \sin \omega (0) + i\omega C_4 \cos \omega (0) = 0 \]

\[i\omega C_4 = 0 \]
\[\text{i can never be 0} \]
\[\Rightarrow C_4 = 0 \]

\[\therefore X(t) = A \cos \omega t \]
Separation of Variables

Procedure to Solve differential Equations with more than one independent variable (PDE)

1. Move all like Variables to the Same Side

 \[f(t) \frac{dg(x)}{dx} = h(x) \frac{dm(t)}{dt} \]

 \[\downarrow \]

 \[\frac{f(t)}{dm(t)} = \frac{h(x)}{dg(x)} \]

2. Integrate both sides

 \[\int \frac{f(t)}{dm(t)} \, dt = \int \frac{h(x)}{dg(x)} \, dx \]

 \[\downarrow \]

 \[\int \frac{f(t)}{dm(t)} \, dt = \frac{F(t)}{m(t)} + C \]

3. Solve for C using boundary conditions
e.g.) Solve \(P(y) \frac{dy}{dx} = Q(x) \)

Where \(P(y) = y^2 \) \& \(Q(x) = \frac{1}{x} \)

Find the general solution

\[
y^2 \frac{dy}{dx} = \frac{1}{x}
\]

① Move like variables to same side

\[
y^2 \, dy = \frac{dx}{x}
\]

② Integrate both sides

\[
\int y^2 \, dy = \int \frac{dx}{x}
\]

\[
\frac{1}{3} y^3 + C_1 = \ln x + C_2
\]

Let \(C = C_2 - C_1 \)

\[
\frac{1}{3} y^3 = \ln x + C
\]

This is the general solution
Example Find the Solution to the following differential Eq. with the given boundary Condition

\[x^2 \frac{dy}{dx} = y^2 \]

where \(x = 1 \)
\[y = 3 \]

1. \[\frac{dy}{y^2} = \frac{dx}{x^2} \]

2. \[\int \frac{1}{y} dy = \int \frac{1}{x^2} dx \]
\[\frac{-1}{y} + C_1 = \frac{-1}{x} + C_2 \]
\[\Rightarrow \frac{-1}{y} = \frac{-1}{x} + C \]

3. \[\frac{-1}{3} = -1 + C \]
\[\Rightarrow C = \frac{2}{3} \]
\[\therefore \frac{-1}{y} = \frac{-1}{x} + \frac{2}{3} \]
\[\therefore y = \frac{3 - 2x}{3x} \]
Matrices

Suppose A and B are matrices such that

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad B = \begin{pmatrix} x & y \\ s & t \end{pmatrix}$$

Addition of matrices

$$A + B = \begin{pmatrix} a + x & b + y \\ c + s & d + t \end{pmatrix}$$

Matrix Multiplication

$$AB = \begin{pmatrix} ax + bs & ay + bt \\ cx + ds & cy + dt \end{pmatrix}$$

Scalar Multiplication

$$KA = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix} \text{ where } K \text{ is a constant (Scalar)}$$

Note: When multiplying two matrices, the number of columns of the first matrix must equal the number of rows of the second matrix.

P.S. The product will have a dimension that equals the

$\begin{array}{c}
\text{# of rows} \times \text{# columns} \\
\text{1st matrix} \times \text{2nd matrix}
\end{array}$

e.g.) $(\begin{pmatrix} a \\ b \\ c \end{pmatrix})(\begin{pmatrix} de & ef \\ bd & be & bf \\ cd & ce & cf \end{pmatrix}) < dimension \text{ Rows } = 3 \text{ ? } 3 \times 3$

$\text{Mat}$$

$(\begin{pmatrix} d & e & f \end{pmatrix})(\begin{pmatrix} a \\ b \\ c \end{pmatrix}) = da + be + cf$ \leftarrow dimension \text{ Row } = 1 \text{ ? } 1 \times 1 \rightarrow \text{ Number}$
Suppose \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)

The determinant of \(A \) is: \(\det(A) = ad - bc \)

The transpose of \(A \) is: \(A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \)

Suppose \(A = \begin{pmatrix} a+i & b \\ c+i & d \end{pmatrix} \)

The complex conjugate is \(A^* = \begin{pmatrix} a-i & b \\ c-i & d \end{pmatrix} = \bar{A} \)

The conjugate transpose is \(A^{\#} = \begin{pmatrix} a-i & c-i \\ b & d \end{pmatrix} \)

If a matrix is equal to its complex conjugate transpose, then that matrix is a Hermitian Matrix

*** All Hermitian Matrices (operators) have real eigenvalues (observables)