ECON 186 Class Notes: Differential Equations

Jijian Fan

August 21, 2016

Differential Equations

- Many times and in many different ways, we have solved equations. Consider the equation $\frac{d y}{d x}=2 x$. We solve this equation by integration.

$$
\int d y=\int 2 x d x \rightarrow y=x^{2}+c
$$

- This is an example of a differential equation, which is any equation which involves a derivative. Many differential equations we can solve simply by integrating, but how about an equation of the form

$$
\frac{1}{y} \frac{d y}{d x}=-a
$$

- This type of differential equation we cannot simply integrate to find the solution, so we must learn new techniques to solve other types of differential equations.

Differential Equations

- As economists, why do we care about how to solve these types of differential equations?
- The primary use of differential equations in general is to model motion, which is commonly called growth in economics. Specifically, a differential equation expresses the rate of change of the current state as a function of the current state.
- Example: Suppose that GDP grows at some constant rate g over time. Then, if y is the current level of GDP in the economy, we can express the relationship as

$$
\frac{d y}{d t}=\dot{y}=g y(t)
$$

- We will soon discover that this differential equation has a simple solution:

$$
y(t)=c e^{g t}
$$

Direction Fields

- Differential equations are useful because there is a differential equation to describe nearly any physical situation. Or, for our purposes, we can use them to model many economic situations as well.
- Given this, we want to be able to describe how some variable changes over time, regardless of whether we are actually able to solve a given differential equation.
- Using arrows to represent the direction of motion, we can create geometric representations of differential equations called direction fields.
- Consider the differential equation

$$
y^{\prime}=\left(y^{2}-y-2\right)(1-y)^{2}
$$

Direction Fields

- Although we do not know how to find the solution of this differential equation, we can still take steps to characterize the solution.
- First, we must find where the derivative is zero

$$
0=\left(y^{2}-y-2\right)(1-y)^{2}=(y-2)(y+1)(1-y)^{2}
$$

- So, the derivative is zero at three values, $y=-1,1,2$.

Direction Fields

- So, since the derivative is zero, this means that the slope of the tangent lines are zero at these values. So, we will start our direction field with this knowledge.

- So, the graph is now divided into four regions. We now want to see how y evolves over time within each region. To do this, plug in values of y within each region and check the sign and magnitude of the derivative.

Direction Fields

- First, we check the region $y<-1$, so we first plug in $y=-2$ to get

$$
y^{\prime}=(-2-2)(-2+1)(1-(-2))^{2}=\left(-4 *-1 * 3^{2}\right)=36
$$

- However, if we then look even closer to the edge of the region, say, $y=-1.1$, we get

$$
y^{\prime}=(-1.1-2)(-1.1+1)(1-(-1.1))^{2}=-3.1 *-.1 *-2.1^{2}=1.3671
$$

- So, the slope is very steep and positive as y becomes more negative, and very close to $y=-1$, the slope is still positive but less steep.

Direction Fields

Direction Fields

- Next, we check the middle region $-1<y<1$. We will check two points very near the boundary. Let's check $y=-0.9$ and $y=0.9$.

$$
\begin{gathered}
y^{\prime}=(-0.9-2)(-0.9+1)(1-(-0.9))^{2}=-1.0469 \\
y^{\prime}=(0.9-2)(0.9+1)(1-0.9)^{2}=-0.0209
\end{gathered}
$$

Direction Fields

Direction Fields

- Next, check the region $1<y<2$. Check $y=1.1$ and $y=1.9$.

$$
\begin{aligned}
& y^{\prime}=(1.1-2)(1.1+1)(1-(1.1))^{2}=-0.0189 \\
& y^{\prime}=(1.9-2)(1.9+1)(1-(1.9))^{2}=-0.2349
\end{aligned}
$$

Direction Fields

- Finally, we want to check the region $y>2$. Let's check $y=2.1$ and $y=3$.

$$
\begin{gathered}
y^{\prime}=(2.1-2)(2.1+1)(1-2.1)^{2}=0.3751 \\
y^{\prime}=(3-2)(3+1)(1-3)^{2}=16
\end{gathered}
$$

Direction Fields

Direction Fields

- Then, we want to draw a set of integral curves, which are the path a variable will take given a certain initial condition. A set of integral curves is displayed in the following

Direction Fields

- Finally, we can characterize the behavior of y based on the initial condition of y as $t \rightarrow \infty$.

Value of $y(0)$	Behavior as $t \rightarrow \infty$
$y(0)<1$	$y \rightarrow-1$
$1 \leq y(0)<2$	$y \rightarrow 1$
$y(0)=2$	$y \rightarrow 2$
$y(0)>2$	$y \rightarrow \infty$

Differential Equations

- The order of a differential equation is the order of the highest derivative that appears in the equation.
- A linear differential equation is any differential equation that can be written in the following form:

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\ldots+a_{1}(t) y^{t}(t)+a_{0}(t) y(t)=g(t)
$$

- The important thing to note about linear differential equations is that there are no products of the function $y(t)$ and any of its derivatives, and neither $y(t)$ nor any of its derivatives occur to any power other than the first.
- Ordinary differential equations (ode) are equations involving only ordinary derivatives, while partial differential equations (pde) involve partial derivatives.
- A homogeneous differential equation with dependent variable y is a differential equation where each term must contain y or a derivative of y.

Derivation of Solution of First Order Linear Differential Equations

- Thus far we have considered a simple example of GDP growth, but now we want to consider all linear first order differential equations.

$$
\begin{equation*}
\frac{d y}{d t}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

- Our goal is to find an explicit solution of this differential equation, that is, y by itself on the left hand side.
- Now, suppose that there is some function $\mu(t)$ which we call the integrating factor. Multiply through by $\mu(t)$ to get

$$
\begin{equation*}
\frac{d y}{d t} \mu(t)+\mu(t) p(t) y=\mu(t) g(t) \tag{2}
\end{equation*}
$$

- Assume that

$$
\begin{equation*}
\mu(t) p(t)=\mu^{\prime}(t) \tag{3}
\end{equation*}
$$

Derivation of Solution of First Order Linear Differential Equations

- Then, plugging (3) into (2), we get

$$
\begin{equation*}
\mu(t) \frac{d y}{d t}+\mu^{\prime}(t) y=\mu(t) g(t) \tag{4}
\end{equation*}
$$

- Then, notice that the left hand side is in fact the product rule of y and μ :

$$
\mu(t) \frac{d y}{d t}+\mu^{\prime}(t) y=(\mu(t) y(t))^{\prime}
$$

- So, we can write (4) as

$$
\begin{equation*}
(\mu(t) y(t))^{\prime}=\mu(t) g(t) \tag{5}
\end{equation*}
$$

- Then, integrate both sides to get

$$
\begin{equation*}
\int(\mu(t) y(t))^{\prime} d t=\int \mu(t) g(t) d t \rightarrow \mu(t) y(t)+c=\int \mu(t) g(t) d t \tag{6}
\end{equation*}
$$

Derivation of Solution of First Order Linear Differential Equations

- From (6), we can simplify to get

$$
\begin{gathered}
\mu(t) y(t)=\int \mu(t) g(t) d t-c \\
y(t)=\frac{\int \mu(t) g(t) d t-c}{\mu(t)}
\end{gathered}
$$

- For convenience, since c is an unknown constant, we will change the minus sign to a plus, so that the solution is

$$
y(t)=\frac{\int \mu(t) g(t) d t+c}{\mu(t)}
$$

- However, $\mu(t)$ is simply some function we decided to use in our derivation, but what is it?

Derivation of Solution of First Order Linear Differential Equations

- To determine what $\mu(t)$ is, we must go back to our assumption in equation (3)

$$
\mu(t) p(t)=\mu^{\prime}(t)
$$

- Divide both sides by $\mu(t)$:

$$
\frac{\mu^{\prime}(t)}{\mu(t)}=p(t)
$$

- Recall that the left hand side is simply the natural logarithm of $\mu(t)$, so we can rewrite as

$$
(\ln (\mu(t)))^{\prime}=p(t)
$$

Derivation of Solution of First Order Linear Differential Equations

- Then, integrate both sides to get

$$
\begin{gathered}
\ln (\mu(t))+k=\int p(t) d t \\
\ln (\mu(t))=\int p(t) d t+k \\
\mu(t)=e^{\int p(t) d t+k}
\end{gathered}
$$

Derivation of Solution of First Order Linear Differential Equations

- Although this is a correct solution of $\mu(t)$, having the constant k in the exponent is inconvenient, so using the properties of exponents, note that

$$
\mu(t)=e^{\int p(t) d t+k}=e^{k} e^{\int p(t) d t}
$$

- Again, k is just some unknown constant, so let's just rename e^{k} as k so that we can write $\mu(t)$ as

$$
\mu(t)=k e^{\int p(t) d t}
$$

- Now note however that by combining our solutions for $y(t)$ and $\mu(t)$, we get

$$
y(t)=\frac{\int k e^{\int p(t) d t} g(t) d t+c}{k e^{\int p(t) d t}}=\frac{\int e^{\int p(t) d t} g(t) d t+\frac{c}{k}}{e^{\int p(t) d t}}
$$

- Then, since c and k are arbitrary constants, so is a ratio of the two, so we will call this ratio c. Then, we can just drop k from the solution of $\mu(t)$ since it will be absorbed into c anyway.

First Order Linear Differential Equations

- So, we can express the solution to a general first order linear differential equation

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

- as the following two equations

$$
\begin{gather*}
y(t)=\frac{\int \mu(t) g(t) d t+c}{\mu(t)} \\
\mu(t)=e^{\int p(t) d t} \tag{7}
\end{gather*}
$$

First Order Linear Differential Equations Examples

- Let's return to the GDP growth example given by the differential equation

$$
\frac{d y}{d t}=g y
$$

- First, put the differential equation in the proper form

$$
\frac{d y}{d t}-g y=0
$$

- Apply the formulas

$$
\begin{gathered}
\mu(t)=e^{\int-g d t}=e^{-g t} \\
y(t)=\frac{\int e^{-g t}(0) d t+c}{e^{-g t}}=c e^{g t}
\end{gathered}
$$

First Order Linear Differential Equations Examples

- Consider the nonhomogeneous differential equation

$$
\frac{d v}{d t}=9.8-0.196 v
$$

- To find the solution, we must first put the differential equation in the proper form

$$
\frac{d v}{d t}+0.196 v=9.8
$$

- Apply the formulas

$$
\begin{gathered}
\mu(t)=e^{\int 0.196 d t}=e^{0.196 t} \\
v(t)=\frac{\int e^{0.196 t}(9.8) d t+c}{e^{0.196 t}}=\frac{\frac{9.8}{0.196} e^{0.196 t}+c}{e^{0.196 t}}=50+c e^{-0.196 t}
\end{gathered}
$$

First Order Linear Differential Equations Examples

- The solution to the previous problem is known as a general solution. However, if we specify initial conditions, we can find a particular solution. For first order differential equations, one initial condition will always give a particular solution. This type of problem is known as an initial value problem.
- Consider the previous problem, but now with an initial condition for v.

$$
\frac{d v}{d t}=9.8-0.196 v \quad v(0)=48
$$

- We need to find the value of c that satisfies the initial condition.

$$
\begin{gathered}
v(t)=50+c e^{-0.196 t} \rightarrow v(0)=50+c e^{-0.196(0)} \\
=50+c \rightarrow 48=50+c \rightarrow c=-2
\end{gathered}
$$

- So, the particular solution to the initial value problem is

$$
v=50-2 e^{-0.196 t}
$$

First Order Linear Differential Equations Examples

First Order Linear Differential Equations Examples

- Find the solution to the following initial value problem.

$$
t y^{\prime}+2 y=t^{2}-t+1 \quad y(1)=\frac{1}{2}
$$

- First, divide through by t to put the differential equation in the proper form.

$$
y^{\prime}+\frac{2}{t} y=t-1+\frac{1}{t}
$$

- Then, apply the formulas

$$
\begin{gathered}
\mu(t)=e^{\int \frac{2}{t} d t}=e^{2 / n|t|}=e^{\ln |t|^{2}}=|t|^{2}=t^{2} \\
y(t)=\frac{\int \mu(t) g(t) d t+c}{\mu(t)}=\frac{\int t^{2}\left(t-1+\frac{1}{t}\right) d t+c}{t^{2}}=\frac{\int\left(t^{3}-t^{2}+t\right) d t+c}{t^{2}} \\
=\frac{\frac{t^{4}}{4}-\frac{t^{3}}{3}+\frac{t^{2}}{2}+c}{t^{2}}=\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+c t^{-2}
\end{gathered}
$$

First Order Linear Differential Equations Examples

- Applying the initial value, we get

$$
y(1)=\frac{1}{2}=\frac{1}{4}-\frac{1}{3}+\frac{1}{2}+c=\frac{5}{12}+c \rightarrow \frac{6}{12}=\frac{5}{12}+c \rightarrow c=\frac{1}{12}
$$

- So the final solution is

$$
y(t)=\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{1}{12 t^{2}}
$$

Separable Differential Equations

- A separable differential equation is any differential equation that can be written in the following form:

$$
N(y) \frac{d y}{d x}=M(x)
$$

- To solve, first rewrite as follows:

$$
N(y) d y=M(x) d x
$$

- Then, integrate both sides

$$
\int N(y) d y=\int M(x) d x
$$

- This will provide an implicit solution that we may sometimes, but not always, solve for an explicit solution.

Separable Differential Equations Example

- Solve the following separable differential equation

$$
\frac{d y}{d x}=6 y^{2} x \quad y(1)=\frac{1}{25}
$$

- First, rewrite as

$$
\frac{1}{6 y^{2}} d y=x d x
$$

- Then, integrate both sides

$$
\int \frac{1}{6 y^{2}} d y=\int x d x \rightarrow-\frac{1}{6 y}+c=\frac{x^{2}}{2}+k \rightarrow-\frac{1}{y}=3 x^{2}+c
$$

- Plugging in the initial value to find the value of the constant c, we get

$$
-\frac{1}{\frac{1}{25}}=3(1)^{2}+c \rightarrow-25=3+c \rightarrow c=-28
$$

Separable Differential Equations Example

- So, the implicit solution is

$$
-\frac{1}{y}=3 x^{2}-28
$$

- We can then easily solve for y to obtain an explicit solution

$$
-\frac{1}{y}=3 x^{2}-28 \rightarrow y=-\frac{1}{3 x^{2}-28}=\frac{1}{28-3 x^{2}}
$$

- Note that this solution is only valid if $x \neq \pm \sqrt{\frac{28}{3}}$.
- Therefore, the range of x can be any of the following intervals:

$$
\left(-\infty,-\sqrt{\frac{28}{3}}\right),\left(-\sqrt{\frac{28}{3}}, \sqrt{\frac{28}{3}}\right),\left(\sqrt{\frac{28}{3}}, \infty\right)
$$

\star However, only the interval $\left(-\sqrt{\frac{28}{3}}, \sqrt{\frac{28}{3}}\right)$ contains the value of x in the initial condition, so this is known as the interval of validity.

Separable Differential Equations Example

- Solve the initial value problem

$$
y^{\prime}=\frac{d y}{d x}=\frac{x y^{3}}{\sqrt{1+x^{2}}} \quad y(0)=-1
$$

- Separate into the proper form and then integrate both sides

$$
\int \frac{1}{y^{3}} d y=\int \frac{x}{\sqrt{1+x^{2}}} d x
$$

- To integrate the right hand side, set $u=1+x^{2}$, so $d u=2 x d x$ and $d x=\frac{d u}{2 x}$. Then, the right hand side becomes

$$
\int \frac{x}{u^{\frac{1}{2}}} \frac{d u}{2 x}=\frac{1}{2} \int u^{-\frac{1}{2}} d u=\frac{1}{2} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+c=u+c=\sqrt{1+x^{2}}+c
$$

- So, the implicit solution for the differential equation is

$$
-\frac{1}{2 y^{2}}+k=\sqrt{1+x^{2}}+c \rightarrow-\frac{1}{2 y^{2}}=\sqrt{1+x^{2}}+c
$$

Separable Differential Equations Example

- Plugging in the initial value

$$
-\frac{1}{2(-1)^{2}}=\sqrt{1+(0)^{2}}+c \rightarrow-\frac{1}{2}=1+c \rightarrow c=-\frac{3}{2}
$$

- Then, we can solve for the explicit solution

$$
\begin{gathered}
-\frac{1}{2 y^{2}}=\sqrt{1+x^{2}}-\frac{3}{2} \rightarrow y^{2}=-\frac{1}{2 \sqrt{1+x^{2}}-3} \rightarrow y^{2}=\frac{1}{3-2 \sqrt{1+x^{2}}} \\
y(x)= \pm \frac{1}{\sqrt{3-2 \sqrt{1+x^{2}}}}
\end{gathered}
$$

