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Differential Equations

Many times and in many different ways, we have solved equations.
Consider the equation dy

dx = 2x . We solve this equation by integration.∫
dy =

∫
2xdx → y = x2 + c

This is an example of a differential equation, which is any equation
which involves a derivative. Many differential equations we can solve
simply by integrating, but how about an equation of the form

1
y

dy
dx =−a

This type of differential equation we cannot simply integrate to find
the solution, so we must learn new techniques to solve other types of
differential equations.
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Differential Equations

As economists, why do we care about how to solve these types of
differential equations?
The primary use of differential equations in general is to model
motion, which is commonly called growth in economics. Specifically, a
differential equation expresses the rate of change of the current state
as a function of the current state.
Example: Suppose that GDP grows at some constant rate g over
time. Then, if y is the current level of GDP in the economy, we can
express the relationship as

dy
dt =

.y = gy(t)

We will soon discover that this differential equation has a simple
solution:

y(t) = cegt
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Direction Fields

Differential equations are useful because there is a differential
equation to describe nearly any physical situation. Or, for our
purposes, we can use them to model many economic situations as
well.
Given this, we want to be able to describe how some variable changes
over time, regardless of whether we are actually able to solve a given
differential equation.
Using arrows to represent the direction of motion, we can create
geometric representations of differential equations called direction
fields.
Consider the differential equation

y ′ =
(
y2−y −2

)
(1−y)2
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Direction Fields

Although we do not know how to find the solution of this differential
equation, we can still take steps to characterize the solution.
First, we must find where the derivative is zero

0=
(
y2−y −2

)
(1−y)2 = (y −2)(y +1)(1−y)2

So, the derivative is zero at three values, y =−1,1,2.
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Direction Fields
So, since the derivative is zero, this means that the slope of the
tangent lines are zero at these values. So, we will start our direction
field with this knowledge.

So, the graph is now divided into four regions. We now want to see
how y evolves over time within each region. To do this, plug in values
of y within each region and check the sign and magnitude of the
derivative.
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Direction Fields

First, we check the region y <−1, so we first plug in y =−2 to get

y ′ = (−2−2)(−2+1)(1− (−2))2 =
(
−4∗−1∗32)= 36

However, if we then look even closer to the edge of the region, say,
y =−1.1, we get

y ′ = (−1.1−2)(−1.1+1)(1− (−1.1))2 =−3.1∗−.1∗−2.12 = 1.3671

So, the slope is very steep and positive as y becomes more negative,
and very close to y =−1, the slope is still positive but less steep.
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Direction Fields
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Direction Fields

Next, we check the middle region −1< y < 1. We will check two
points very near the boundary. Let’s check y =−0.9 and y = 0.9.

y ′ = (−0.9−2)(−0.9+1)(1− (−0.9))2 =−1.0469

y ′ = (0.9−2)(0.9+1)(1−0.9)2 =−0.0209
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Direction Fields
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Direction Fields

Next, check the region 1< y < 2. Check y = 1.1 and y = 1.9.

y ′ = (1.1−2)(1.1+1)(1− (1.1))2 =−0.0189

y ′ = (1.9−2)(1.9+1)(1− (1.9))2 =−0.2349
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Direction Fields

Finally, we want to check the region y > 2. Let’s check y = 2.1 and
y = 3.

y ′ = (2.1−2)(2.1+1)(1−2.1)2 = 0.3751

y ′ = (3−2)(3+1)(1−3)2 = 16
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Direction Fields

Jijian Fan (UC Santa Cruz) ECON 186 August 21, 2016 13 / 34



Direction Fields
Then, we want to draw a set of integral curves, which are the path a
variable will take given a certain initial condition. A set of integral
curves is displayed in the following

Jijian Fan (UC Santa Cruz) ECON 186 August 21, 2016 14 / 34



Direction Fields

Finally, we can characterize the behavior of y based on the initial
condition of y as t→ ∞.

Value of y(0) Behavior as t→ ∞

y(0)< 1 y →−1
1≤ y(0)< 2 y → 1

y(0) = 2 y → 2
y(0)> 2 y → ∞
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Differential Equations
The order of a differential equation is the order of the highest
derivative that appears in the equation.
A linear differential equation is any differential equation that can be
written in the following form:

an(t)y (n)(t)+an−1(t)y (n−1)(t)+ ...+a1(t)y t(t)+a0(t)y(t) = g(t)

The important thing to note about linear differential equations is that
there are no products of the function y(t) and any of its derivatives,
and neither y(t) nor any of its derivatives occur to any power other
than the first.
Ordinary differential equations (ode) are equations involving only
ordinary derivatives, while partial differential equations (pde) involve
partial derivatives.
A homogeneous differential equation with dependent variable y is a
differential equation where each term must contain y or a derivative
of y .
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Derivation of Solution of First Order Linear Differential
Equations

Thus far we have considered a simple example of GDP growth, but
now we want to consider all linear first order differential equations.

dy
dt +p(t)y = g(t) (1)

Our goal is to find an explicit solution of this differential equation,
that is, y by itself on the left hand side.
Now, suppose that there is some function µ(t) which we call the
integrating factor. Multiply through by µ(t) to get

dy
dt µ(t)+µ(t)p(t)y = µ(t)g(t) (2)

Assume that
µ(t)p(t) = µ

′
(t) (3)
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Derivation of Solution of First Order Linear Differential
Equations

Then, plugging (3) into (2), we get

µ(t)dy
dt +µ

′
(t)y = µ(t)g(t) (4)

Then, notice that the left hand side is in fact the product rule of y
and µ:

µ(t)dy
dt +µ

′
(t)y = (µ(t)y(t))′

So, we can write (4) as

(µ(t)y(t))′ = µ(t)g(t) (5)

Then, integrate both sides to get∫
(µ(t)y(t))′dt =

∫
µ(t)g(t)dt→ µ(t)y(t)+c =

∫
µ(t)g(t)dt (6)
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Derivation of Solution of First Order Linear Differential
Equations

From (6), we can simplify to get

µ(t)y(t) =
∫

µ(t)g(t)dt− c

y(t) =
∫

µ(t)g(t)dt− c
µ(t)

For convenience, since c is an unknown constant, we will change the
minus sign to a plus, so that the solution is

y(t) =
∫

µ(t)g(t)dt + c
µ(t)

However, µ(t) is simply some function we decided to use in our
derivation, but what is it?
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Derivation of Solution of First Order Linear Differential
Equations

To determine what µ(t) is, we must go back to our assumption in
equation (3)

µ(t)p(t) = µ
′
(t)

Divide both sides by µ(t):

µ
′
(t)

µ(t) = p(t)

Recall that the left hand side is simply the natural logarithm of µ(t),
so we can rewrite as

(ln (µ(t)))
′
= p(t)
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Derivation of Solution of First Order Linear Differential
Equations

Then, integrate both sides to get

ln (µ(t))+k =
∫

p(t)dt

ln (µ(t)) =
∫

p(t)dt +k

µ(t) = e
∫

p(t)dt+k
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Derivation of Solution of First Order Linear Differential
Equations

Although this is a correct solution of µ(t), having the constant k in
the exponent is inconvenient, so using the properties of exponents,
note that

µ(t) = e
∫

p(t)dt+k = eke
∫

p(t)dt

Again, k is just some unknown constant, so let’s just rename ek as k
so that we can write µ(t) as

µ(t) = ke
∫

p(t)dt

Now note however that by combining our solutions for y(t) and µ(t),
we get

y(t) =
∫

ke
∫

p(t)dtg(t)dt + c
ke
∫

p(t)dt =

∫
e
∫

p(t)dtg(t)dt + c
k

e
∫

p(t)dt

Then, since c and k are arbitrary constants, so is a ratio of the two,
so we will call this ratio c. Then, we can just drop k from the
solution of µ(t) since it will be absorbed into c anyway.
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First Order Linear Differential Equations

So, we can express the solution to a general first order linear
differential equation

dy
dt +p(t)y = g(t)

as the following two equations

y(t) =
∫

µ(t)g(t)dt + c
µ(t)

µ(t) = e
∫

p(t)dt (7)
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First Order Linear Differential Equations Examples

Let’s return to the GDP growth example given by the differential
equation

dy
dt = gy

First, put the differential equation in the proper form

dy
dt −gy = 0

Apply the formulas
µ(t) = e

∫
−gdt = e−gt

y(t) =
∫

e−gt(0)dt + c
e−gt = cegt
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First Order Linear Differential Equations Examples

Consider the nonhomogeneous differential equation

dv
dt = 9.8−0.196v

To find the solution, we must first put the differential equation in the
proper form

dv
dt +0.196v = 9.8

Apply the formulas

µ(t) = e
∫

0.196dt = e0.196t

v(t) =
∫

e0.196t(9.8)dt + c
e0.196t =

9.8
0.196e0.196t + c

e0.196t = 50+ ce−0.196t

Jijian Fan (UC Santa Cruz) ECON 186 August 21, 2016 25 / 34



First Order Linear Differential Equations Examples
The solution to the previous problem is known as a general solution.
However, if we specify initial conditions, we can find a particular
solution. For first order differential equations, one initial condition will
always give a particular solution. This type of problem is known as an
initial value problem.
Consider the previous problem, but now with an initial condition for v .

dv
dt = 9.8−0.196v v(0) = 48

We need to find the value of c that satisfies the initial condition.

v(t) = 50+ ce−0.196t → v(0) = 50+ ce−0.196(0)

= 50+ c → 48= 50+ c → c =−2

So, the particular solution to the initial value problem is

v = 50−2e−0.196t
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First Order Linear Differential Equations Examples
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First Order Linear Differential Equations Examples
Find the solution to the following initial value problem.

ty ′+2y = t2− t +1 y(1) = 1
2

First, divide through by t to put the differential equation in the
proper form.

y ′+ 2
t y = t−1+ 1

t
Then, apply the formulas

µ(t) = e
∫ 2

t dt = e2ln|t| = eln|t|2 = |t|2 = t2

y(t)=
∫

µ(t)g(t)dt + c
µ(t) =

∫
t2 (t−1+ 1

t
)

dt + c
t2 =

∫ (
t3− t2 + t

)
dt + c

t2

=
t4

4 −
t3

3 + t2

2 + c
t2 =

t2

4 −
t
3 +

1
2 + ct−2
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First Order Linear Differential Equations Examples

Applying the initial value, we get

y(1) = 1
2 =

1
4 −

1
3 +

1
2 + c =

5
12 + c → 6

12 =
5
12 + c → c =

1
12

So the final solution is

y(t) = t2

4 −
t
3 +

1
2 +

1
12t2
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Separable Differential Equations

A separable differential equation is any differential equation that can
be written in the following form:

N(y)dy
dx = M(x)

To solve, first rewrite as follows:

N(y)dy = M(x)dx

Then, integrate both sides∫
N(y)dy =

∫
M(x)dx

This will provide an implicit solution that we may sometimes, but not
always, solve for an explicit solution.
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Separable Differential Equations Example
Solve the following separable differential equation

dy
dx = 6y2x y(1) = 1

25

First, rewrite as
1

6y2 dy = xdx

Then, integrate both sides∫ 1
6y2 dy =

∫
xdx →− 1

6y + c =
x2

2 +k →−1
y = 3x2 + c

Plugging in the initial value to find the value of the constant c, we get

− 1
1
25

= 3(1)2 + c →−25= 3+ c → c =−28

Jijian Fan (UC Santa Cruz) ECON 186 August 21, 2016 31 / 34



Separable Differential Equations Example
So, the implicit solution is

−1
y = 3x2−28

We can then easily solve for y to obtain an explicit solution

−1
y = 3x2−28→ y =− 1

3x2−28 =
1

28−3x2

Note that this solution is only valid if x 6=±
√

28
3 .

I Therefore, the range of x can be any of the following intervals:(
−∞,−

√
28
3

)
,

(
−
√

28
3 ,
√

28
3

)
,

(√
28
3 ,∞

)
F However, only the interval

(
−
√

28
3 ,
√

28
3

)
contains the value of x in the

initial condition, so this is known as the interval of validity.
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Separable Differential Equations Example
Solve the initial value problem

y ′ = dy
dx =

xy3
√
1+ x2

y(0) =−1

Separate into the proper form and then integrate both sides∫ 1
y3 dy =

∫ x√
1+ x2

dx

To integrate the right hand side, set u = 1+ x2, so du = 2xdx and
dx = du

2x . Then, the right hand side becomes∫ x
u 1

2

du
2x =

1
2

∫
u−

1
2 du =

1
2

u 1
2

1
2
+ c = u+ c =

√
1+ x2 + c

So, the implicit solution for the differential equation is

− 1
2y2 +k =

√
1+ x2 + c →− 1

2y2 =
√
1+ x2 + c
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Separable Differential Equations Example

Plugging in the initial value

− 1
2(−1)2 =

√
1+(0)2 + c →−1

2 = 1+ c → c =−3
2

Then, we can solve for the explicit solution

− 1
2y2 =

√
1+ x2− 3

2 → y2 =− 1
2
√
1+ x2−3

→ y2 =
1

3−2
√
1+ x2

y(x) =± 1√
3−2

√
1+ x2
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