Overview
Phonologically-conditioned ineffability is modeled using UR constraints. Under this account, ineffability results when the grammar blocks UR selection. This is a natural extension of accounts of allomorphy in which phonological constraints select between URs. UR constraints provide a means to account for exceptions to ineffability, while avoiding the ranking paradoxes of morpheme-specific MPARSE.

Ineffability
Some set of morphosyntactic features lacks a surface realization, due to phonological constraints.

Tagalog: Sonorant-labial OCP blocks -um- infixation (Orgun & Sprouse 1999: 206)

1a pejint p-u-m-ejnt paint
1b keri k-u-m-eri carry
1c wejil *w-u-m-ejl wail
1d meri *m-u-m-eri marry

Labial OCP doesn’t block ma-prefixation or reduplication (Orgun & Sprouse 1999: 205)

2a mulat ma-mulat have one’s eyes opened
2b wala? ma-wala? be lost
2c mumug mu-mumug-in will gargle

Labial OCP doesn’t block roots (Orgun & Sprouse 1999: 205)

3a muma? ghost
3b mumo particles of cooked rice
3c mumug-in gargle-present

Lexical exceptions
Ineffability is commonly morpheme-specific and subject to exceptions (Hetzron 1975, Orgun & Sprouse 1999, Fanselow & Féry 2002).

Labial OCP doesn’t block ma-prefixation or reduplication (Orgun & Sprouse 1999: 205)

2a mulat ma-mulat have one’s eyes opened
2b wala? ma-wala? be lost
2c mumug mu-mumug-in will gargle

Labial OCP doesn’t block roots (Orgun & Sprouse 1999: 205)

3a muma? ghost
3b mumo particles of cooked rice
3c mumug-in gargle-present

Lexical exception with -um- (Zuraw & Lu 2009)

4 wagaajwaj w-u-m-agajwaj wave

UR constraints
The input to phonology is not undergoing forms (URs), but morphosyntactic features (Wolf 2008 for an overview). UR constraints require a particular set of morphosyntactic features (or meaning) to be realized by a particular UR (Zuraw 2000, Boersma 2001).

Examples: UM+ /um/; CARRY + /keri/; GHOST + /mum+er/;

For each meaning, there is a finite set of UR constraints. The set of candidate URs consists of every UR specified in one of those constraints. Each of these is paired with candidate SRs, producing a candidate set of (UR, SR) pairs.

Ineffability with UR constraints
The candidate set contains candidates in which the meaning is not realized at all. When one of these deficient candidates is optimal, the result is ineffability. The underscores represent meanings without corresponding URs.

Partial candidate set for UM=MARRY

S1 /um+meri/ [mumeri] Acceptable
Sb /um+/ [um] Ineffable
Sc ___+/meri/ [meri] Ineffable
Sd ___+Ø Ø Ineffable

Analysis of Tagalog
Labial OCP doesn’t block ma-prefixation or reduplication (Orgun & Sprouse 1999: 205)

2a mulat ma-mulat have one’s eyes opened
2b wala? ma-wala? be lost
2c mumug mu-mumug-in will gargle

Labial OCP doesn’t block roots (Orgun & Sprouse 1999: 205)

3a muma? ghost
3b mumo particles of cooked rice
3c mumug-in gargle-present

Lexical exception with -um- (Zuraw & Lu 2009)

4 wagaajwaj w-u-m-agajwaj wave

Analysis of exceptions
Exceptionality comes from an exceptionally high-ranked UR constraint.

Alternative: MPARSE
An MPARSE account suffers from ranking paradoxes (MPARSE: Prince & Smolensky 1993/2004; Wolf & McCarthy 2009). If a morpheme surfaces in an OCP environment, its MPARSE constraint will be ranked above OCP. An input containing this morpheme will not be ineffable, an undesirable result.

Reduplication occurs both in and outside of gaps (Orgun & Sprouse 1999)

References