Excerpts of Dr. B's dissertation: “Novel (-)-β-Pinene-Derived Amino Alcohols as Asymmetric Directors for the Addition of Organozinc Reagents to Aldehydes” UC Santa Cruz, 2010.

EXPERIMENTAL METHODS AND COMPOUND CHARACTERIZATION

General Methods.

All reagents were commercially available, unless otherwise stated. All air and moisture sensitive reactions were carried out under argon atmosphere using flame- or oven-dried glassware and standard syringe technique. Tetrahydrofuran (THF), dichloromethane (DCM), cyclohexane, triethylamine (Et₃N), morpholine, tert-butanol (t-BuOH), and dimethyl sulfoxide (DMSO) were distilled over CaH₂. Oxalyl chloride was distilled without drying agent prior to use. Column chromatography was carried out with Silica Gel 60. Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were carried out at 300, 500, or 600 MHz. Chemical shifts are reported relative to TMS (δ=0 ppm), CHCl₃ (δ=7.27 ppm) or DMSO (δ=2.54 ppm) for ¹H NMR and CHCl₃ (δ=77 ppm) for ¹³C NMR. The following abbreviations were used to describe peak patterns where appropriate: br=broad, s=singlet, d=doublet, t=triplet, q=quartet, app=apparent, sep=septet, and m=multiplet. IR spectra were carried out on NaCl plates with νmax in inverse centimeters. Optical rotations were obtained on a digital polarimeter at 20 °C. High resolution mass measurements were obtained on a benchtop ESITOF mass spectrometer.

(+)-Nopinone. NaIO₄ (44.96 g, 210 mmol) was added to a 2-L round-bottom flask equipped with a magnetic stir bar and dissolved in water (300 mL), CCl₄ (200 mL), and CH₃CN (200 mL). (-)-β-Pinene (13.88 g, 102.0 mmol) was added followed by RuCl₃-3H₂O (457 mg, 1.7 mmol). The reaction was stirred overnight while open to the atmosphere (24 h). The crude reaction mixture was filtered through a pad of celite and rinsed with DCM, creating two distinct layers. The aqueous layer was extracted with DCM (3 x 100 mL). The combined organic extracts were washed with water (2 x 30 mL), dried (MgSO₄), filtered, and concentrated in vacuo to a black liquid. This was purified by column chromatography (500 mL SiO₂, 100% hexane to elute β-pinene, 4:1 Hexane/EtOAc to elute nopinone) and the nopinone fractions were concentrated to a clear oil (8.3 g, 59% yield). ¹H NMR (CDCl₃, 600 MHz) δ (ppm): 2.60 (m, 1H), 2.57 (m, 1H), 2.53 (m, 1H), 2.35 (ddd, J=19.2 Hz, J=9.6 Hz, J=1.8 Hz, 1H), 2.24 (tt, J=6.6 Hz, J=1.8 Hz, 1H), 2.05 (ddddd, J=13.2 Hz, J=9.0 Hz, J=3.6 Hz, J=1.8 Hz, 1H), 1.95 (m, 1H), 1.58 (d, J=10.2 Hz, 1H), 1.33 (s, 3H), 0.86 (s, 3H). ¹³C NMR (CDCl₃, 500 MHz) δ (ppm): 215.3, 58.0, 41.3, 40.4, 32.8, 25.9, 25.3, 22.2, 21.4. bp 74-76 °C (2 mm Hg), [α]D₂²² +34.43° (c 4, MeOH), IR (neat) 1714 cm⁻¹.