Where are the electrons and what are they doing?

Bond →

Orbitals →

Use periodic table to assign electron configuration (e- config)
Electron Configuration (e-config)

<table>
<thead>
<tr>
<th>Column Rep*</th>
<th>H</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total #e-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full e-config</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Valence e-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valence e-config</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Diagram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis dot (atom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis dot (molecules)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Representative atom for a column on the periodic table.
Valence Bond Theory
- Covalent bonds formed by sharing of e- through interactions of (hybrid) orbitals

Ex. Hydrogen, H_2

Sigma (σ) bond
- Direct orbital overlap
- Localized e- sharing
- AKA Single bond

Ex. Chloroform

Hybridization = combining s & p orbitals to allow an atom to make the desired numbers and type of bonds

Unhybridized Carbon Atom

$$
= \begin{array}{c}
2s \\
2p_x \\
2p_y \\
2p_z \\
1 - s \\
3 - p \text{ orbitals}
\end{array}
\rightarrow
\begin{array}{c}
\text{hybridization}
\end{array}
\begin{array}{c}
\text{sp}^3 \text{ Hybridized Carbon Atom}
\end{array}

$$

sp2 Hybridized Carbon Atom

$$
\begin{array}{c}
\text{hybridization}
\end{array}
\begin{array}{c}
3 - \text{sp}^2 \text{ hybrid orbitals}
\end{array}
\begin{array}{c}
1 - \text{p orbital unhybridized}
\end{array}
\begin{array}{c}
\text{trigonal planar}
\end{array}
$$

Pi (π) Bond
- Delocalized e- sharing between p orbitals

sp Hybridized Carbon Atom

$$
\begin{array}{c}
\text{hybridization}
\end{array}
\begin{array}{c}
2 - \text{sp}^2 \text{ hybrid orbitals}
\end{array}
\begin{array}{c}
2 - \text{p orbitals unhybridized}
\end{array}
\begin{array}{c}
\text{linear}
\end{array}
$$
Valence Bond Theory

<table>
<thead>
<tr>
<th>Hybridization</th>
<th>sp^3</th>
<th>sp^2</th>
<th>sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>H $\overset{1}{\text{H}}\overset{1}{\text{C}}\overset{1}{\text{H}}$</td>
<td>H $C=\overset{1}{\text{C}}\overset{1}{\text{H}}$</td>
<td>H $C=\overset{1}{\text{C}}\overset{1}{\text{H}}$</td>
</tr>
<tr>
<td>$#$ charge clouds*</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Orbitals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e-config</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbital Diagram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>Tetrahedral</td>
<td>Trigonal Planar</td>
<td>Linear</td>
</tr>
<tr>
<td>Bond Angles</td>
<td>109.5</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td>More examples!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Charge cloud = atom or lone pair around central atom; NOT the number of bonds!
Representations of Organic Molecules

<table>
<thead>
<tr>
<th>Line-Bond (Lewis)</th>
<th>Condensed</th>
<th>Skeletal (zig-zag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₃CH₂CH₂CH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₂CHC(CH₃)₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td> (depot-injected contraceptive)</td>
<td> (for training purposes only!)</td>
</tr>
</tbody>
</table>

Indicate the hybridization (sp³, sp², or sp) of every C, O, and N atom...

Next time... Polarity, Formal Charge, Resonance
** Take ~30 min to skim Chapter 2.1-2.6 before lecture, use Reading Questions!