CHEM 8A, Lecture 1 - Structure & Bonding - Orbitals & Electron Configuration - Lewis Structures - Valence Bond Theory & Hybrid Orbitals - Condensed & Skeletal Structures ### Review of Atomic Structure: Chloroform, CHCl₃ ^{**} Where are the electrons and what are they doing? Bond → Orbitals → # Use periodic table to assign electron configuration (e-config) | 1 | | | | | | | | | | | | | | | | | 18 | |---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | 1
H
1.008 | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 2
He
4.0026 | | 3
Li
6.94 | 4
Be
9.0122 | | | | | | | | | | | 5
B
10.81 | 6
C
12.011 | 7
N
14.007 | 8
O
15.999 | 9
F
18.998 | 10
Ne
20.180 | | 11
Na
22.990 | 12
Mg
24.305 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al
26.982 | 14
Si
28.085 | 15
P
30.974 | 16
S
32.06 | 17
Cl
35.45 | 18
Ar
39.948 | | 19
K
39.098 | 20
Ca
40.078 | 21
Sc
44.956 | 22
Ti
47.867 | 23
V
50.942 | 24
Cr
51.996 | 25
Mn
54.938 | 26
Fe
55.845 | 27
Co
58.933 | 28
Ni
58.693 | 29
Cu
63.546 | 30
Zn
65.38 | 31
Ga
69.723 | 32
Ge
72.630 | 33
As
74.922 | 34
Se
78.97 | 35
Br
79.904 | 36
Kr
83.798 | | 37
Rb
85.468 | 38
Sr
87.62 | 39
Y
88.906 | 40
Zr
91.224 | 41
Nb
92.906 | 42
Mo
95.95 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.91 | 46
Pd
106.42 | 47
Ag
107.87 | 48
Cd
112.41 | 49
In
114.82 | 50
Sn
118.71 | 51
Sb
121.76 | 52
Te
127.60 | 53
I
126.90 | 54
Xe
131.29 | | 55
Cs
132.91 | 56
Ba
137.33 | 57-71
* | 72
Hf
178.49 | 73
Ta
180.95 | 74
W
183.84 | 75
Re
186.21 | 76
Os
190.23 | 77
Ir
192.22 | 78
Pt
195.08 | 79
Au
196.97 | 80
Hg
200.59 | 81
TI
204.38 | 82
Pb
207.2 | 83
Bi
208.98 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | 87
Fr
(223) | 88
Ra
(226) | 89-103
| 104
Rf
(265) | 105
Db
(268) | 106
Sg
(271) | 107
Bh
(270) | 108
Hs
(277) | 109
Mt
(276) | 110
Ds
(281) | 111
Rg
(280) | 112
Cn
(285) | 113
Nh
(286) | 114
Fl
(289) | 115
Mc
(289) | 116
Lv
(293) | 117
Ts
(294) | 118
Og
(294) | | | * Lanti
seri | | 57
La
138.91 | 58
Ce
140.12 | 59
Pr
140.91 | 60
Nd
144.24 | 61
Pm
(145) | 62
Sm
150.36 | 63
Eu
151.96 | 64
Gd
157.25 | 65
Tb
158.93 | 66
Dy
162.50 | 67
Ho
164.93 | 68
Er
167.26 | 69
Tm
168.93 | 70
Yb
173.05 | 71
Lu
174.97 | | # Actinide series | | 89
Ac
(227) | 90
Th
232.04 | 91
Pa
231.04 | 92
U
238.03 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | 103
Lr
(262) | | # **Electron Configuration (e-config)** | Column
Rep* | Н | В | С | N | 0 | F | |--------------------------|---|---|---|---|---|---| | Total #e- | | | | | | | | Full e-
config | | | | | | | | # of
Valence e- | | | | | | | | Valence e-
config | | | | | | | | Orbital
Diagram | | | | | | | | Lewis dot (atom) | | | | | | | | Lewis dot
(molecules) | | | | | | | | | | | | | | | ^{*} Representative atom for a column on the periodic table. #### **Valence Bond Theory** - Covalent bonds formed by sharing of e- through interactions of (hybrid) orbitals Ex. Hydrogen, H₂ Sigma (σ) bond Direct orbital overlap Localized e- sharing AKA Single bond Ex. Chloroform **Hybridization** = combining s & p orbitals to allow an atom to make the desired numbers and type of bonds sp Hybridized Carbon Atom # **Valence Bond Theory** | Hybridization | sp³ | sp ² | sp | |----------------------|-------------------------------|---|--| | Example | Н | Н Н | H-CEC-H | | xampio | H-Ċ-H
∴ | C=C | 0 - 0 . 1 . | | | H | н́ Н | | | # charge | 4 | 3 | 2 | | clouds* | 7 | 3 | 2 | | Orbitals | | p | | | Orbitals | sp^3 carbon | sp^2 sp^2 sp^2 Side view sp^2 120° | One sp hybrid Another sp | | | | $sp^{2}^{^{\prime}}$ Top view | | | e-config | | - | | | c-comig | | | | | Orbital
Diagram | sp^3 – sp^3 σ bond | π bond σ bond T bond Carbon–carbon double bond | π bond σ bond Carbon-carbon triple bond | | Shana | Tetrahadral | Trigonal Planer | | | Shape
Bond Angles | Tetrahedral
109.5 | Trigonal Planar
120 | Linear
180 | | Bond Angles
More | 103.5 | IZU | 100 | | | | | | | examples! | ound central atom: NOT | | ^{*} Charge cloud = atom or lone pair around central atom; NOT the number of bonds! **Representations of Organic Molecules** | Line-Bond (Lewis) | Condensed | Skeletal (zig-zag) | |--|---|--------------------| | H H H H
H-C-C-C-C-H
H H H H | CH ₃ CH ₂ CH ₂ CH ₃ | | | H, H
H, C, C, C, H
H, C, C, C, H | | | | | CH ₂ CHC(CH ₃) ₃ | | | | | O OH | Indicate the **hybridization** (sp³, sp², or sp) of every C, O, and N atom... **Depro-Provera** (depot-injected contraceptive) $$H_2N$$ OH "Fictitious molecule" (for training purposes only!) Next time...Polarity, Formal Charge, Resonance ** Take ~30 min to skim Chapter 2.1-2.6 before lecture, use Reading Questions!