Contrast enhancement and cue trading in Irish consonant articulations

Ryan Bennett (Yale), Grant McGuire (UCSC)
Jaye Padgett (UCSC), Máire Ní Chiosáin (UCD)

2017 LSA meeting, Austin, TX
Modern Irish

Irish (or *Gaeilge*) is the ‘first official language’ of the Republic of Ireland.

But: an endangered minority language!

- Language of daily use for 2-3% of the population (about 100,000 speakers) (2011 census data).
Official *Gaeltacht* (Irish-speaking) areas
Secondary articulations in Connemara Irish

<table>
<thead>
<tr>
<th></th>
<th>LABIAL</th>
<th>CORONAL</th>
<th>DORSAL</th>
<th>GLOTTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP</td>
<td>p p̟</td>
<td>t t̟</td>
<td>k k̟</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b b̟</td>
<td>d d̟</td>
<td>g g̟</td>
<td></td>
</tr>
<tr>
<td>FRICATIVE</td>
<td>f f̟</td>
<td>s s̟</td>
<td>x x̟</td>
<td>h (h̟)</td>
</tr>
<tr>
<td></td>
<td>v v̟</td>
<td></td>
<td>(ɣ) (ɣ̟)</td>
<td></td>
</tr>
<tr>
<td>NASAL</td>
<td>m m̟</td>
<td>n n̟</td>
<td>η η̟</td>
<td></td>
</tr>
<tr>
<td>LIQUID</td>
<td></td>
<td>l l̟</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r r̟</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By convention: [C] = [C̟]
Secondary articulations in Connemara Irish

<table>
<thead>
<tr>
<th>PALATALIZED /Cʲ/</th>
<th>VELARIZED /Cˠ/</th>
</tr>
</thead>
<tbody>
<tr>
<td>beann /bʲɔːn/ 'peak'</td>
<td>bán /bɔːn/ 'white'</td>
</tr>
<tr>
<td>cait /katʲ/ 'cat (PL)'</td>
<td>cat /kat/ 'cat (SG)'</td>
</tr>
</tbody>
</table>
Dialect descriptions: Secondary articulations

Palatalization $[C^j]$

• Front of tongue raised towards hard palate.
• Dorsal position resembles high front $[i \ j]$

Velarization $[C^ɣ]$

• Back of tongue raised towards soft palate.
• Dorsal position resembles high back $[u \ \emptyset]$

(de Bhaldraithe 1945:24, Breatnach 1947:26, Mhac an Fhailligh 1968:24, etc.)
Secondary articulations in Connemara Irish

Acoustic correlates of $[C^j]$ (Ní Chiosáin & Padgett 2012):

• Raised F2 on adjacent vowels
• Stop releases (esp. coronals):
 – Louder and longer
 – Higher spectral COG
 – Some degree of affrication

• Not much data on fricatives and sonorants.
Secondary articulations in Connemara Irish

Secondary palatalization and velarization reportedly reinforced by labial gestures.

- /Cɣ/: lips actively rounded
- /Cj/: lips actively spread

Lip rounding and dorsum backing both lower F2

(e.g. Stevens 1998).

(e.g. Ó Cuív 1944:31-51, Ó Siadhail 1991)
Contrast enhancement or trading relations?

Research question 1:

• Are rounding/retraction combined to enhance the acoustic salience of /CV CJ/ contrasts? (Stevens & Keyser 1989)
 • Rounding achieves maximal acoustic dispersion.

• Or do speakers trade-off between rounding and tongue body gestures to achieve acoustic stability?
 • E.g. lip rounding can compensate for weak velarization, as a strategy to achieve consistent (low) F2.
Reinforcement and phonological targets

Continuous reinforcement: reinforcement occurs to achieve numerically-defined acoustic targets.

- Phonological targets are specified in a continuous space (e.g. F2 values).
- Reinforcement is a low-level process – can gradiently compensate for changes in gestural magnitude.
- Predicts token-by-token, inverse correlation between degree of backing and degree of lip rounding.

(e.g. Perkell et al. 2000, Flemming 2001, Keyser & Stevens 2006, Kingston 2007, Stevens & Keyser 2010, Niziolek et al. 2013a,b and references there)
Reinforcement and phonological targets

Discrete reinforcement: reinforcement occurs at an abstract, categorical level of encoding.

- Phonological targets are specified in a discrete space (e.g. labial constriction).
- Gestures are either present or absent – there is no phonological modulation of gestural magnitude.
- Predicts little/no correlation in magnitude of lip rounding and dorsal gestures.

(e.g. Stevens et al. 1986, Browman & Goldstein 1989 *et seq.*, Padgett 2001, 2003, and references there)
Secondary articulations: coronals

Coronal /Cɣ/: raising and backing of tongue body less extreme?

“But the dentals d, n, t have neutral ə-quality rather than u-quality, yet they are sufficiently distinct in their point of articulation from the corresponding palatals... similarly s is more neutral than velar in quality”

(Mhac an Fhailigh 1968:24)
Secondary articulations in Connemara Irish

Does reduced velarization on coronals threaten the perceptual salience of /Cɣ Cj/ contrasts?

• Weak velarization = weak F2 separation = confusion?

• Not necessarily: *noise components* may still be perceptually distinct.
 – COG, duration, etc.

• **Hypothesis:** weak velarization on coronal /Cɣ/ should be tolerated when the coronal /Cj Cɣ/ contrast is robustly signaled by cues *other* than F2.
Secondary articulations in Connemara Irish

Research question 2: for individual speakers, do we find a correlation between:

- Weakness of velarization on coronal /Cγ/.
- Robustness of noise cues to the /Cγ Cj/ contrast on palatalized vs. velarized coronals.
Ultrasound study

Documenting the articulatory phonetics of secondary dorsal contrasts using ultrasound.

- NSF # BCS-1423772/1424398

Jaye Padgett (UCSC)
Grant McGuire (UCSC)
Máire Ní Chiosáín (UCD)
Ultrasound study

All three major dialect groups (5 speakers each):

• Donegal (Northern)
• **Connemara (Western)**
• Kerry (Southern)
Microphone

Ultrasound probe
Ultrasound study: sample words

<table>
<thead>
<tr>
<th>Palatalized /C̃/</th>
<th>Velarized /C̃/</th>
</tr>
</thead>
<tbody>
<tr>
<td>tí /t̃iː/</td>
<td>tuí /t̃iː/</td>
</tr>
<tr>
<td>‘house (gen.sg.)’</td>
<td>‘straw’</td>
</tr>
<tr>
<td>tiús /t̃uːs/</td>
<td>tús /t̃us/</td>
</tr>
<tr>
<td>‘thickness’</td>
<td>‘beginning’</td>
</tr>
<tr>
<td>síos /s̃iːs/</td>
<td>suí /s̃iː/</td>
</tr>
<tr>
<td>‘down’</td>
<td>‘sitting’</td>
</tr>
<tr>
<td>siúl /s̃uːl/</td>
<td>sú /s̃uː/</td>
</tr>
<tr>
<td>‘walking’</td>
<td>‘juice’</td>
</tr>
</tbody>
</table>
Ultrasound study: wordlist

Target consonants:
• PoA: coronal, labial, dorsal
• Secondary articulations: /Cγ Cj/
• Manner: stops and fricatives
• Voiceless consonants only.
 – Exception: lexical gaps forced us to use /bjuː/ and /biː/.

Environment:
• Word-initial [#CV...]
• Vowel contexts: [#Cuː...], [#Ciː...]
Ultrasound study: procedure

• Speakers recruited from *Raidió na Gaeltachta*.
 – 5 speakers
 – Recording took place at *RnaG* studios.

• 24 target words (3 places x 2 manners x 2 vowels x 2 sec. artics.)
 – 6-8 repetitions of each target word per speaker.
 – Wordlist pseudo-randomized
Analysis
Tracing in EdgeTrak
(Li et al. 2005)

C onset for $b’\text{fiú}$ [b^ju:] ‘it is worth’
(Speaker 3, rep. 3)
Tracing in EdgeTrak
(Li et al. 2005)

C onset for *b’fhiú* [buː] ‘it is worth’
(Speaker 3, rep. 3)
Raw tracings

bj_u / onset

Y (mm)

X (mm)

20 40 60 80 100 120

-20 -40 -60 -80 -100

BACK
(TONGUE ROOT)

FRONT
(TONGUE TIP)

Rep.1
Rep.2
Rep.3
Rep.4
Rep.5
Rep.6
Rep.7
Rep.8
Statistical methods

Quantitative analysis:

- Principal component analysis (PCA).
- A technique for dimensionality reduction.
- Used in many fields to explore structured covariation (clustering) in large data sets (Jolliffe 2002).
- See Johnson (2008:95-102) for an overview of our method.
Principal components

Overall mean shape for data set

Change in shape/position as PC1 varies (±5`.)

Overall mean shape for data set
Analysis of ultrasound data

Focus primarily on C offset:

- \(C^y C^j \) distinction is perceptually strongest at C-V transition. (e.g. Ladefoged & Maddieson 1996:333-6, Kochetov 2006)

- C-offset =
 - Fricatives: offset of fricative noise
 - Stops: onset of release burst
Results: labial backness
Results: dorsal backness

PC1 (backness) values for C offset

Consonant quality: [fy] [fj] [p\text{\textbar}] [p\text{j}] [s\text{\textbar}] [s\text{j}] [t\text{\textbar}] [t\text{j}] [x\text{\textbar}] [x\text{j}] [k\text{\textbar}] [k\text{j}]

n=61 n=58 n=63 n=59
n=61 n=62 n=62 n=61
n=62 n=61 n=61 n=62
Results: coronal backness
Research question: lip rounding
Does lip rounding co-vary with /C^y C^j/ contrasts?
Lip rounding: side contact

(Goldstein 1991, Kavitskaya and Barnes 2003)
Results: lip rounding in dorsals
Results: lip rounding in coronals

Lip rounding (side contact) values for C offset
Results: lip rounding in labials

Lip rounding (side contact) values for C offset
Results: lip rounding

Linear-mixed effects modeling used to analyze factors which condition side contact (lip rounding).

• Two backness-related predictors:

 • **Secondary articulation**: /Cʲ/ vs. /Cɣ/ (CATEGORICAL)

 • Predicted to be significant under **discrete reinforcement**.

 • **Principle component 1** (CONTINUOUS)

 • Can potentially capture *within-category* correlations between backness and rounding.

 • Our index of *trading relations* within /Cɣ Cʲ/.

 • Predicted to be significant under **continuous reinforcement**.
Results: lip rounding

• **Secondary articulation:** /Cɣ/ > /Cʲ/

 – Strongest for dorsals (DOR x /Cʲ/: less rounded)

 – Nearly non-existent for coronals (COR x /Cʲ/: more rounded)

• **Degree of tongue-body backing:**

 – PC1 does *not* predict lip rounding beyond the categorical /Cɣ Cʲ/ contrast (p > .39 for all predictors involving PC1).

• Other factors affecting lip rounding: vowel context, place, manner, various interactions
Results: lip rounding

Interim conclusions:

• The **categorical** distinction between /Cɣ Cʲ/ strongly conditions lip rounding.

• Finer, within-category distinctions in *strength* of dorsal backing/fronting do not systematically correlate with degree of lip rounding.

• More clearly consistent with *discrete reinforcement* (*enhancement*/*dispersion*) than continuous reinforcement (*trading relations*/*stability*).
Secondary articulations: coronals

Two observations regarding coronals:
• Weaker secondary velarization.
• Little/no reinforcement of /CV Cʃ/ contrast with lip-rounding.

(e.g. Ó Cuív 1944:31-51, Mhac an Fhailligh 1968:24)
Research question: coronals
Are noise cues on coronals sufficiently robust to compensate for weak backing of *velarized* coronals?
[tʃiː]

[tʃɪː]
[s̃iː]

[sviː]

Sound pressure level (dB/Hz)

Frequency (Hz)

2.205 \times 10^4
Secondary articulations: coronals

For each speaker, we correlate:

- **PC1** for coronal /s^v/ and /t^v/ (strength of velarization)
- **Difference** in mean COG for /s^v s^j/ and /t^v t^j/ (distinctiveness of noise components)
Correlation between ΔCOG and PC1
All coronals [Tɣ Tɨ] at C offset

POINT = SPEAKER by MANNER (/s/ or /t/)

$r = -0.57^*$
Coronals: Conclusions

Weak velarization is tolerated on coronal /C^{\gamma}/ when noise cues sufficiently distinguish coronal /C^{\gamma}/~/C^{j}/.
Conclusions

Results:

• Categorical enhancement of /Cy Cj/ contrast with reinforcing lip-rounding, but no trading relations.
• Consistent with view that reinforcement occurs at a relatively abstract level.
 – E.g. [low/high F2], but not [F2=2400Hz]
 – Or: perceptually-driven addition of categorical gestures

(Stevens 1989 et seq., Kingston et al. 2008, etc.)
Conclusions

Results:

• Some support for quantitative trading between:
 – Degree of velarization on coronal /C^v/
 – Acoustic separation of noise cues to coronal /C^v/~/C^j/ contrasts.

• Contrast preservation appears to hold at level of **individual speakers**.
 – Not clear from our (sparse) data whether individual-level trading relations are categorical or gradient.
Issues and further work

• Individual variation.

• Is lip rounding more robust/systematic for productions with *peripheral/ambiguous PC1 values*?
 – Economy of effort: enhancement as a ‘last resort’
 – Preliminary investigation fails to support this prediction ($-0.75 < PC1 < 0.75$).

 (Perkell et al. 2000, Stevens 2004)
Issues and further work

• No evidence of lip-rounding differences for /p\text{Y} p^j/
 – Contrary to traditional descriptions!

• However: side contact may not be the best measure of lip rounding for labials.
 – Labial closure (esp. for stops /p b/) could induce a ceiling effect for side contact.
 – Better measures:
 • Protrusion
 • Side contact at end of release noise – differences emerge for labials, but still no token-wise trading relations.
Secondary articulations across Irish: labial and coronal variation

(Hickey 2011)
Acknowledgments

• Our participants
• The staff at Raidió na Gaeltachta
• Jenny Bellik (UCSC)
• Our research assistants:
 – **Yale**: Tom McCoy, Bettina Cheung, Connor McCabe
Thank you!

Go raibh maith agaibh!