Carbon-based nanocomposites have been hailed as low-cost, high-performance electrocatalysts that may rival precious metal-based commercial benchmarks in a range of electrochemical energy technologies, such as fuel cells, water electrolyzers, and metal–air batteries. These materials are typically prepared by thermal treatment of select precursors at elevated temperatures, such as controlled pyrolysis and hydro/solvothermal methods, which are time-consuming and energy-intensive. Recently, effective techniques have been developed for the ultrafast synthesis of such electrocatalysts based on the Joule effect, microwave irradiation, laser ablation, and magnetic induction heating, which markedly reduce the amount of time and energy in sample preparation and more significantly, produce nonequilibrium structures that are unattainable in conventional procedures, leading to unprecedented electrocatalytic performances.

Trends in ultrafast synthesis

Design and engineering of low-cost, high-performance electrocatalysts represent a critical first step in the advancement of important electrochemical energy technologies, such as fuel cells, water electrolyzers, and metal–air batteries, thanks largely to the complex reaction pathways and sluggish electron-transfer kinetics of the cathode and anode reactions [1]. Whereas precious metal-based materials are the catalysts of choice for these reactions, carbon-based nanocomposites have recently emerged as viable alternatives with their reduced costs and competitive performances. These composites are generally prepared by thermal treatment of select precursors at elevated temperatures, such as controlled pyrolysis and hydro/solvothermal procedures, which are time and energy intensive [2]. Recently, effective techniques have been developed for the ultrafast synthesis (see Glossary) of such functional nanocomposites [3,4], based on carbothermal shock, flash Joule heating (FJH) [5–7], microwave irradiation [8–10], laser ablation [11], magnetic induction heating (MIH) [12,13], flame synthesis [14–16], plasma sputtering [17,18], and electrosynthesis [19], among others. In these ultrafast procedures, the samples can be prepared within milliseconds to seconds, and the materials structures may exhibit a clear deviation from the thermodynamic equilibrium that is manifested in the traditional time-temperature-transformation diagram, in sharp contrast to those derived from conventional synthesis [7,20]. In fact, immiscibility of metals can be overcome allowing the formation of unprecedented alloys. In addition, because of the short heating duration, mobility and aggregation of atomic species are significantly impeded [12,19], leading to the formation of rampant structural defects, such as stacking faults, twin boundaries, dislocations, Schottky defects, and Frenkel defects [21–25]. Such nonequilibrium features may play a critical role in dictating the interactions with key reaction intermediates and the eventual electrocatalytic activity.

In this review, we first summarize recent advances in the ultrafast synthesis of novel electrocatalysts by thermal shock, FJH, laser ablation, microwave irradiation, and MIH (Box 1); highlight the unique materials structures and the relevant electrocatalytic performances toward important electrochemical reactions; and finally, include a perspective for future research.
Box 1. Introduction on and comparison of ultrafast synthetic techniques

Carbothermal shock and FJH are both based on the Joule heating effect, which use conductive carbon materials as the substrates and can reach a high temperature within milliseconds, rendering the decomposition of precursors. Laser ablation uses a high-energy pulsed laser as the heating source, with a high heating and cooling rate, creating a high temperature at a small spot on the material surface, leading to local decomposition or ablation of the targets. Microwave irradiation uses electromagnetic irradiation to induce structural changes in target materials, where control of the resulting temperature is challenging. MIH uses a high-frequency electromagnetic field to generate noncontact Eddy currents on the metal pieces and thermally-radiatively decompose the target precursors with a high heating and cooling rate. Flame synthesis utilizes flame combustion to burn the precursors on select substrates, which are usually used to prepare metal oxides and carbon-based materials. Electroshock method, a way of electrolysing on a relatively low scale, deposits metals onto ultramicroelectrodes within milliseconds by electrochemical reduction of metal ions. Moving bed pyrolysis uses a traditional furnace as the heating apparatus, where the sample can be physically moved out of the heating zone, which greatly reduces the time of sample preparation by removing the long heating duration and annealing process. The comparison of these techniques is summarized in Table 1.

Table I. Comparison of various ultrafast synthetic techniques

<table>
<thead>
<tr>
<th>Synthetic techniques</th>
<th>Energy resources</th>
<th>Time scale</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbothermal shock</td>
<td>Direct currents</td>
<td>Within milliseconds</td>
<td>Up to thousands of Kelvin</td>
</tr>
<tr>
<td>FJH</td>
<td>Discharge from capacitors</td>
<td>Within milliseconds</td>
<td>Up to thousands of Kelvin</td>
</tr>
<tr>
<td>Laser ablation</td>
<td>High-energy pulsed laser beams</td>
<td>From milliseconds to minutes (for accumulation of materials)</td>
<td>Up to thousands of Kelvin locally</td>
</tr>
<tr>
<td>Microwave irradiation</td>
<td>Electromagnetic irradiation</td>
<td>From seconds to minutes</td>
<td>Up to 1000 K, but usually implicit</td>
</tr>
<tr>
<td>MIH</td>
<td>Eddy current generated by electromagnetic fields</td>
<td>Within seconds, can last longer to minutes if needed</td>
<td>Up to 1800 K, depends on the heating metal</td>
</tr>
<tr>
<td>Flame synthesis</td>
<td>Flame combustion</td>
<td>Within seconds</td>
<td>Up to thousands of Kelvin, but nonuniform</td>
</tr>
<tr>
<td>Electroshock method</td>
<td>Electrochemical reduction</td>
<td>Within milliseconds</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Plasma sputtering</td>
<td>Plasma bombard reaction</td>
<td>Within tens of seconds</td>
<td>From room temperature to hundreds of Kelvin</td>
</tr>
<tr>
<td>Moving bed pyrolysis</td>
<td>Regular tube furnaces</td>
<td>Within minutes</td>
<td>Up to 1000 K</td>
</tr>
</tbody>
</table>

Thermal shock

Carbothermal shock can be exploited to heat conductive samples up to thousands of Kelvin at high direct currents within milliseconds (Joule’s law), leading to a drastic transformation of the structures of materials. For instance, microparticles of Al, Si, Sn, Au, and Pd supported on reduced graphene oxide (rGO) can be readily converted into nanoparticles of about 10 nm by applying a high direct current for 2 ms (Figure 1A,B), due to thermal shock (ca. 1700 K) that melted the starting particles into smaller ones [26]. The procedure was also used to convert Ni microparticles on rGO into Ni nanoparticles of about 75 nm encapsulated by thin carbon layers [27], which exhibited a remarkable electrocatalytic activity toward the electrooxidation of H2O2 (602 mA cm−2 at +0.2 V vs. Ag/AgCl), a performance 150 times higher than that of the original Ni microparticles. In a similar fashion, metal chalcogenide (e.g., FeS2) nanoparticles were produced on rGO by thermal shock of micron-sized precursors at about 2470 K followed by quenching to room temperature within 12 ms (Figure 1C) [28]. The obtained FeS2/rGO composites exhibited an excellent electrocatalytic activity toward the hydrogen evolution
reaction (HER) in acidic media, with an overpotential (Δη_{HER,10}) of −139 mV to reach the current density of 10 mA cm$^{-2}$, much lower than that of the micro-sized ones (−260 mV), due to the manipulation of the chemical composition and structure of the nanoparticles and their interactions with the rGO substrate. When thermal shock was applied to carbon nanofibers coated with PdCl$_2$ and NiCl$_2$ at 1550 K for 1 s, the salts were decomposed into PdNi nanoparticles with abundant twin boundaries and stacking faults [25]. Such unique structural features were difficult to produce in traditional synthetic methods, resulting in an excellent activity toward HER (Δη_{HER,10} = −86.3 mV) and H_2O_2 electrooxidation. Excellent HER activities in alkaline media were also observed with thermal shock-derived IrNi nanoalloy and Pt nanoparticles (Figure 1D) [29,30].

Thermal shock even enables localized high-temperature (ca. 1400 K) synthesis under extreme conditions, such as in liquid nitrogen (ca. 77 K; Figure 1D), where the fast quenching facilitates the formation of strains within the nanoparticles. In fact, Pt nanoparticles synthesized in liquid nitrogen (Dr-Pt) possessed abundant dislocations (Figure 1F), and the strong strain effects (Figure 1G) impacted the adsorption of H* species. By contrast, Pt particles synthesized in ambient Ar (Dp-Pt) did not exhibit many dislocations, and the HER activity was markedly lower (Figure 1H). The Dr-Pt nanoparticles also displayed excellent stability (Figure 1I). Similarly, thermal shock has been used to synthesize NiO with O vacancies [31] and Pd nanoparticles with twin boundaries [32] for the electrocatalytic oxidation of methanol, ethylene glycol, and ethanol.

Thermal shock can also be exploited to overcome the thermodynamic immiscibility between metal elements [7,33]. For instance, Cu is immiscible with most transition metals, and phase segregation typically occurs in bimetallic systems (Figure 1J). Yet, it has been demonstrated that thermal shock of a mixture of Cu–X salts (X = Ag, Ni, Sn, In, Pd) on carbon nanofibers at 1300°C for 0.2 s produced Cu–X nanoalloys (ca. 16 nm) with a homogeneous phase (Figure 1K,L) [33]. For comparison, phase segregation was observed for particles prepared at 1000°C with a conventional furnace, and the size was much larger at 100–500 nm. Monte Carlo simulations showed that the nonequilibrium bimetallic mixture was kinetically stable at room temperature. The obtained Cu–X nanoalloys could effectively catalyze the electroreduction of CO into multimetallic products (Figure 1M), and Cu$_{0.9}$Ni$_{0.1}$ showed the highest Faradic efficiency of about 76% at a current density of about 93 mA cm$^{-2}$, much higher than that of Cu alone. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements showed that Ni alloying strengthened the adsorption of CO on the active sites.

Nanoparticles of high-entropy alloys [34], oxides [35,36], sulfides [37], and phosphates [38] have also been readily prepared by thermal shock, exhibiting breaking of the linear scaling correlation between the electronic properties and electrocatalytic activities [20,39] that is key to the enhancement and optimization of the electrocatalytic performance, in sharp contrast to samples prepared by traditional methods. For instance, 10-element high entropy oxide nanoparticles with an ultrafine size of 7 nm (10-HEO with Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd) were successfully prepared on carbon black by using thermal shock at 1400 K within 1 s (Figure 1N,O) [35], and possessed a much enhanced mass activity (and stability) toward the oxygen reduction reaction (ORR; Figure 1P), as compared with commercial Pd. This was ascribed to the atomic distribution of Pd within the single-phase oxide consisting of the other nine elements, where formation of high-entropy oxides reduced the migration and agglomeration of Pd and thus enhanced the ORR stability.

Notably, multiple samples can be concurrently prepared with thermal shock [40], with a ready control of the elemental composition from binary to octonary. Thermal shock is indeed a powerful...
tool in the high-throughput preparation and screening of electrocatalysts, which can be aided by
data-driven calculations and machine learning. Further research is desired to explore the applica-
tion of thermal shock in a controlled atmosphere (e.g., H2 or CO2) or in a liquid medium for more
deliberate manipulation of the structures of materials.

Flash Joule heating

FJH is another ultrafast heating technique based on high-voltage electric discharge that can be
powered with a capacitor bank and generate a temperature over 3000 K under 100 ms (Joule’s
law), along with an ultrafast cooling rate up to 10^4 K s$^{-1}$. Such rapid heating and quenching are
almost impossible to attain in conventional methods (Figure 2A,B) [6], and can be exploited for
the efficient preparation of metastable materials. In one study [41], a simple FJH treatment at a
current of 1350 A for hundreds of milliseconds in a mild vacuum transformed commercial bulk
2H-phase MoS2 and WS2 into the metallic 1T phase (Figure 2C,D), which is metastable, thermally
unfavorable, and difficult to prepare directly by traditional methods [42,43]. This was ascribed to
the formation of S vacancies that accumulated excessive negative charges and made the 1T
phase kinetically preferred. The obtained 1T phase exhibited a much enhanced HER activity
($\eta_{\text{HER,10}} = -221$ mV), as compared with the pristine 2H MoS2 (-491 mV; Figure 2E).

Metal/covalent carbides have also been prepared by FJH (Figure 2F,G) [44]. For instance, phase-
pure and defective MoC$_{1-x}$ could be readily obtained at select voltages, such as hexagonal
β-Mo$_2$C (30 V), metastable cubic α-MoC$_{1-x}$ (60 V), and hexagonal η-MoC$_{1-x}$ (120 V; Figure 2H).
The **topotactic transition** of β-Mo$_2$C to either α-MoC$_{1-x}$ or η-MoC$_{1-x}$ was mainly driven by
the formation of abundant C vacancies (Figure 2I,J). Electrochemically, β-Mo$_2$C exhibited a
much enhanced HER activity in 0.5 M H$_2$SO$_4$ ($\eta_{\text{HER,10}} = -220$ mV), as compared to α-MoC$_{1-x}$
(-310 mV) and η-MoC$_{1-x}$ (-510 mV), along with excellent stability (Figure 2K,L).

FJH is also a viable tool to synthesize carbon-based composites [45,46]. Recently, FJH was used
as a solvent- and catalyst-free process to prepare heteroatom-doped (i.e., B, N, O, P, and S) flash
graphene (FG) within 100–200 ms at about 3000 K [5]. Notably, the S-doped FG showed a high
electrocatalytic activity toward ORR in the 4-e pathway in alkaline media, with a half-wave poten-
tial ($E_{1/2}$) of about +0.77 V versus reversible hydrogen electrode (RHE), whereas the 2-e pathway
and hence H$_2$O$_2$ production were preferred with N-doped FG. Notably, the synthesis could be
scaled up to 1 t per day.

Overall, while still at an early stage for catalyst preparation, FJH is a low-cost and powerful
method to produce novel electrocatalysts, even on a large scale. Nevertheless, the FJH operation
is rather complex, which requires interdisciplinary knowledge of both electrical engineering and
chemistry. Meanwhile, FJH requires the addition of conductive materials (e.g., graphene and
metals) into the precursors, which may lead to the formation of byproducts and/or impurities.

Figure 1. Ultrafast thermal shock. (A) Digital photographs of the Joule heating device before and during heat treatment. (B) Processed temperature values for the spectra along
with the intensity on the 858-nm channel. Reproduced, with permission, from [27]. (C) Schematic illustration of the ultrafast, in situ transformation of minerals to catalyst nanoparticles
(NPs). Reproduced, with permission, from [28]. (D) Schematic diagram of the preparation of dislocation-rich Pt NPs by thermal shock. (E) High-resolution transmission electron
microscopy image of the Dr-Pt NP (scale bar 2 nm). (F) Corresponding inverse fast Fourier transform of (110) plane, and (G) strain distribution related to (110) plane.
(H) Hydrogen evolution reaction activity and (I) durability evaluation of Dr-Pt. Reproduced, with permission, from [29]. (J) Miscibility of Cu with other metals. Elemental mappings
of (K) Cu$_{0.9}$Ni$_{0.1}$ and (L) Cu$_{0.9}$Ag$_{0.1}$. Scale bars 5 nm. (M) Faraday efficiency of pure Cu and different Cu$_{0.9}$X$_{0.1}$, bimetallic catalysts at -0.70 ± 0.01 V versus reversible
hydrogen electrode (RHE) toward the electrocatalytic reduction of CO. Reproduced, with permission, from [33]. (N) Transmission electron microscopy image and
(O) elemental mapping images of the (Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, PdO$_{x-y}$, NPs supported on the carbon black substrate. Scale bars are (N) 20 nm and (O) 10 nm.
(P) Linear sweep voltammetry curves of commercial 5 wt% Pd/C, 22 wt% Pt, 22 wt% PdO, and 22 wt% 10-HEO NPs dispersed on carbon black, tested in an O$_2$-saturated
0.1 M KOH electrolyte at a potential scan rate of 20 mV s$^{-1}$ and a rotation rate of 1600 rpm. Reproduced, with permission, from [35].
See figure legend at the bottom of the next page.
Laser ablation

Laser ablation, based on a nanosecond/picosecond pulse laser, has been used to prepare a range of materials, with a heating/cooling rate up to 10^9 K s$^{-1}$ [47], such as nanoalloys [23,24,48,49], metal oxides [50,51], hydroxides [22,52,53], carbides [54-56], nitrides [57], and chalcogenides [21,58]. In these studies, unique material structures can be produced. For instance, dense stacking faults were observed with Ag nanoparticles (L-Ag) prepared by laser ablation in liquid by shining a pulsed Nd:YAG laser (pulse width 7 ns) on a bulk Ag target in deionized water (Figure 3A,B), where quenching by the surrounding cool water facilitated the formation of abundant vacancies on Ag(111) facets and stacking faults (Figure 3C,D) [24]. The obtained L-Ag nanoparticles displayed an η_{HER} of only -32 mV in 0.5 M H$_2$SO$_4$, significantly lower than that for samples synthesized by conventional wet chemistry (-450 mV), and even slightly better than that of commercial Pt/C (-35 mV; Figure 3E). This was because the stacking faults of L-Ag lowered the Ag coordination number from 12 to 8 and enhanced H adsorption. Laser ablation in liquid was also performed on a bulk Ru target in an Au salt solution to produce Au single-atom alloys of Ru, which exhibited an η_{HER} of only -24 mV in alkaline media [49], due to fast quenching by the solvent that helped freeze the mobile atoms and create a metastable structure. Note that Ru and Au are immiscible, and it is challenging to synthesize RuAu alloys in traditional methods [59]. Laser ablation of other targets, such as bulk MoS$_2$ [60] and CoNi$_2$P [61], have also yielded high-performance electrocatalysts for water splitting.

Laser ablation has also been used to pyrolyze select materials into efficient electrocatalysts. For example, Tang and colleagues [62] used a CO$_2$ laser to pyrolyze metal–organic frameworks supported on various substrate (e.g., nickel foam, carbon cloth), such as ZIF-67, MIL-101(Fe), and Ni-BDC, producing metal nanoparticles encapsulated within a thin carbon shell (NPs@C) in a short time (Figure 3F,G). A large sample surface (up to 15×15 cm2) could be readily prepared by controlling the ablation path (Figure 3H,I). The best sample [MIL-101(Fe) on Ni foam] displayed a low overpotential ($\eta_{\text{HER,50}}$) of $+225$ mV at 50 mA cm$^{-2}$ toward the oxygen evolution reaction (OER) in 1 M KOH (Figure 3J). Efficient OER and ORR electrocatalysts have also been prepared by laser ablation of Kapton polyimide films [63], carbon fiber paper [64], metal-complex-containing polyimide films [65], and metal-immersed cedar woods [66], among others.

Indeed, laser ablation has been used extensively to produce effective electrocatalysts. Because of the high energy and fast quenching rate, it provides a promising route to synthesize metastable electrocatalysts. Nevertheless, laser ablation requires rather expensive apparatus, and the sample productivity is relatively low.

Microwave irradiation

Microwave irradiation can generate an oscillating electric field, electrical dipole, and/or charge, and induce molecular frictions and collisions in target materials, where the kinetic energies can...
be converted into heat producing a temperature up to 1000 K [8,10]. The heating rate of microwave ranges from tens to even thousands of K s$^{-1}$, which depends on several parameters, such as the microwave power and reaction pressure of the machine, as well as target materials morphology, size, loss factor, conductivity, and even structural defects [8,10,67,68]. Microwave-assisted synthesis was first reported in 1986 for organic synthesis [69], and has ever since been extended to the rapid synthesis of a range of materials, such as carbon derivatives [10,70–74], metal/alloy nanoparticles [67,68,75,76], high-entropy alloys/oxides [77,78], metal oxides/hydroxides/nitrides [78–81], metal chalcogenides [82–85], and even single-atom catalysts (SACs) [9,86–88].

For example, graphene-supported SACs were successfully prepared by microwave irradiation of a mixture containing amine-modified graphene oxide, CoCl$_2$, and trace graphene (as a catalyst) at 1000 W for only 5 s (Figure 4A) [9]. Bright flashes were observed (Figure 4B), signifying the production of a high (though unknown) temperature, which facilitated the reduction of amine-modified graphene oxide and N doping into the graphene nanosheets forming N-doped graphene (NG). Meanwhile, the diffusion of metal atoms was impeded by the structural defects and carbon vacancies generated during the heating, leading to immobilization of the metal species and formation of abundant Co single atoms on NG (Figure 4C,D). The Co single atoms were found to possess a relatively low oxidation state and a distorted symmetry of D_{4h}, and surrounded by defective graphene, a clear deviation from the atomic configuration of perfect CoN$_4$C$_4$ or Co(II)Pc [cobalt(II) phthalocyanine]. The obtained Co-NG composites exhibited a relatively low $\eta_{\text{HER,10}}$ of -175 mV in 0.5 M H$_2$SO$_4$ and a high turnover frequency of 0.385 s$^{-1}$ (Figure 4E), whereas Co SACs prepared by prolonged heating in a conventional furnace consisted of CoN$_4$ moieties and exhibited a much lower turnover frequency of only 0.104 s$^{-1}$ [89].

The ORR activity can also be impacted by the generation of imperfect coordination structures of SACs by microwave irradiation [88]. For instance, for Co–N–C composites prepared by microwave irradiation (Figure 4F,G) [90], the formation of low-coordinated CoN$_2$ moieties led to a high selectivity of two-electron ORR with a 90% efficiency of H$_2$O$_2$ production at +0.7 V versus reversible hydrogen electrode (Figure 4H,I), whereas only 50% for CoN$_4$ SACs obtained conventionally (Figure 4J).

Nanomaterials of originally immiscible metals can also be prepared by microwave irradiation. For instance, a variety of Pt–M (M = lanthanide elements of La, Gd, Tb, Er, Tm, and Yb) bimetallic nanomaterials have been prepared by microwave irradiation on Ketjen black [91]. Note that alloying with lanthanide elements is extremely challenging because of their highly negative reduction potentials (typically over -2.0 V), which makes it difficult to reduce them into metallic form even by H$_2$ [92,93]. Yet, when Pt(acac)$_2$ and lanthanide nitrates were mixed together with Ketjen black in a quartz tube, microwave irradiation for only 30 s yielded nanoparticles of 3 nm in diameter with a homogeneous distribution of both Pt and lanthanide (Figure 4K,L), and Pt$_{61}$La$_{39}$ exhibited an even better HER activity in 0.5 M H$_2$SO$_4$ ($\eta_{\text{HER,10}} = -38$ mV) than...
Figure 4. Microwave irradiation synthesis of electrocatalysts. (A) Schematic illustration of the preparation route to Co-NG-MW. (B) Photograph of microwave irradiation. (C) Transmission electron microscopy (TEM) image and (D) elemental maps of Co-NG-MW. Scale bars are (C) 5 nm and (D) 100 nm. (E) Hydrogen evolution reaction (HER)
commercial Pt/C (~64 mV) (Figure 4M). This was accounted for by the optimal adsorption energy of H* (~0.017 eV) when Pt was alloyed with La. Meanwhile, the vacancy formation energy of outermost Pt in the Pt61La39 alloy was markedly higher than that of pristine Pt, which suppressed the dissolution of Pt and enhanced the stability. Ru–metal carbide (MxC, M = Mo, Co, Cr) composites supported on carbon nanotubes were also synthesized by using microwave irradiation to pyrolyze metal carbonyl salts within 100 s [94]. The as-prepared Ru–Mo2C showed an \(\eta_{\text{HER},10} \) of only ~15 mV in alkaline media, owing to the strong metal–support interactions. Notably, the synthesis could be scaled up to over 1 g, much larger than that based on a tube furnace.

In summary, microwave irradiation can reduce the sample preparation time and yield unconventional structures. As microwave irradiation is readily accessible and low-cost, it may be integrated into other traditional methods, such as ball milling and hydrothermal treatment, as well as be combined with other ultrafast methods, such as laser or Joule heating, for further control of the materials structure and activity. Yet, control of heating temperature is challenging, and the heating rate is relatively low.

Magnetic induction heating

MIH, a traditional metallurgical tool, is a new addition to the ultrafast synthesis of functional materials. Upon the application of a magnetic field, an Eddy current can be generated on the metal surface, thus almost instantly heating the surface to a very high temperature within seconds, due to the Joule heating [95]. MIH has been used for heat management in the thermal catalytic synthesis of graphene [96,97]. Nevertheless, applications of MIH for electrocatalyst preparation have been scarcely reported thus far.

Recently, Chen and colleagues [12,13] used MIH to prepare high-performance OER and HER electrocatalysts for water splitting. In one study [12], FeCl3 and NiCl2 salts were deposited onto carbon paper, which was sandwiched between two thin iron sheets. The assembly was placed in the center of an induction solenoid. Upon the application of a high-frequency (30 kHz) current to the solenoid, a strong magnetic field was produced, rapidly heating up the sample assembly (Figure 5A,B), where the heating temperature could be readily controlled by the applied currents and heating time (Figure 5C). At the end of the heating, the assembly might be dropped into a beaker containing dry-ice cold ethanol (~78°C) for rapid quenching (Figure 5A). Experimentally, at the applied current of 250 A for a heating time of 4 s, the obtained sample (FeNiO-250-4) was found to contain FeNi spinel oxides with a homogeneous mixing of the Fe and Ni phases, and the surface was decorated with Cl-enriched Fe–Ni oxide nanospindles (Figure 5D,G). Such unique structural features were difficult to produce in conventional methods based on ‘tedious’ thermal treatment. Notably, segregation of the Fe and Ni phases and a large loss of Cl occurred under the identical experimental conditions but without quenching (FeNiO-MW-250-4; Figure 5H). In addition, when the heating time was prolonged to 16 s, very fine metallic Ni particles were formed on the surface of Fe oxides (FeNiO-250-16; Figure 5I). That is, the materials structures can be effectively manipulated by the applied

polarization curves of Co-N4-MW along with control samples of NG-MW, Co-G-MW, and Pt/C at the scan rate of 5 mV s\(^{-1}\) in 0.5 M \(\text{H}_2\text{SO}_4 \). Reproduced, with permission, from [9]. (F) Schematic diagram of the synthesis route to Co-N4-C/LO and Co-N2-C/HO. (G) TEM image of Co-N4-C/LO. Scale bar 2 nm. (H) Rotating ring-disk electrode voltammograms of Co-N4-C/LO, Co-N2-C/LO, and N-C in O\(_2\)-saturated 0.1 M KOH. (I) \(\text{H}_2\text{O}_2 \) selectivity on Co-N4-C/LO, Co-N2-C/LO, and N-C. (J) Comparison of \(\text{H}_2\text{O}_2 \) current and \(\text{H}_2\text{O}_2 \) selectivity at +0.7 V for Co-N4-C/LO and Co-N2-C/LO. Reproduced, with permission, from [90]. (K) TEM elemental mapping images and line scans of Pt/La51@KB. Scale bar 20 nm. (L) X-ray diffraction patterns of Pt/La51@KB. (M) HER polarization curves of Pt-M nanoalloys and commercial Pt/C in 0.5 M \(\text{H}_2\text{SO}_4 \) electrolyte. Reproduced, with permission, from [91]. Abbreviation: RHE, reversible hydrogen electrode.
current, heating time, as well as quenching, and a nonequilibrium structure can be produced by a deliberate regulation of these variables. Electrochemically, the FeNiO-250-4 sample stood out as the best catalyst toward OER in alkaline media among the sample series, displaying an unprecedented performance with an overpotential ($\eta_{\text{OER,100}}$) of only +260 mV to reach the high current density of 100 mA cm$^{-2}$ (Figure 5J). This was ascribed to the rapid heating and quenching (ca. 103 Ks$^{-1}$) that impeded the phase segregation of the Fe and Ni phases in the spinels and retention of Cl species on the nanospindle surface. Both contributed to the remarkable OER activity, as confirmed in density functional theory calculations.

MIH can also be exploited for the rapid preparation of metal nanoparticles supported on carbon derivatives with unique surface chemistry. In another recent study [13], MIH treatment of RuCl$_3$ deposited on carbon paper for just 6 s at 300 A followed by quenching in dry ice/ethanol led to the formation of Ru nanoparticles (average diameter ca. 7 nm, Ru-300; Figure 5K), where the nanoparticle surface was decorated with abundant Cl species, as confirmed in X-ray photoelectron spectroscopy (Figure 5L,M) and Raman measurements (Figure 5N). The content of the surface Ru–Cl species diminished markedly after prolonged heating and/or with an increasing heating current. Remarkably, the Ru-300 sample displayed an ultrahigh HER activity in both acidic ($\eta_{\text{HER,10}} = -23$ mV) and alkaline conditions (−12 mV), clearly outperforming others in the sample series (Figure 5O,P). Results from density functional theory calculations showed that the surface Ru–Cl species facilitated the charge transfer and downshift of the Ru d-band center, and hence optimized the H adsorption on Ru.

Overall, while at an embryonic stage, MIH is an efficient thermal-radiative technique for ultrafast sample preparation. A diverse range of materials can be prepared by MIH, such as metal chalcogenides, carbides, nitrides, and high-entropy alloys [12], due largely to the ready control of the heating temperature (up to 2000 K) by the induction current and frequency.

Other methods

Ultrafast synthesis of electrocatalysts has also been explored by using other energy sources such as flame, electricity, and plasma. For instance, flame has been used to synthesize various OER and HER catalysts, such as Co-doped WS$_2$ [15], copper ferrite [14], and Co-doped TiO$_2$ [16] (Figure 6A). The synthesis typically took minutes and could generate unique features, such as core–shell structures, defects, and meta-1T phases, that might be beneficial to electrocatalysis. Glasscott and colleagues [19] used an electro-shock method (Figure 6B) to synthesize high-entropy metallic glass nanoparticles (HEMG-NPs, from unary to even
(A) Dip-coating followed by flame annealing to produce \(\text{TiO}_2 \)-coated \(\text{Co} \) nanowires (\(\text{TiO}_2\cdot\text{CoNWs} \)).

(B) Nanodroplet collision and electro-shock reduction yield 900 nm \(\text{HENG-NP} \) on an HOPG electrode.

(C) Plasma sputtering of \(\text{TiO}_2 \) to produce \(\text{Pt} \) nanoparticles on a substrate.

(D) HEA-NPs are produced by introducing precursors into an Ar \((\text{in})\) chamber.
octonary) on the surface of carbon fiber ultramicroelectrodes directly for a duration of ca. 100 ms, where the stoichiometric ratios of CoFeLaNiPt HEMG-NPs could be precisely controlled, leading to tunable activity toward electrochemical water splitting. Plasma has also been used to assist rapid synthesis of electrocatalysts [17]. Select materials, such as metal nitrides and single atoms (Figure 6C) that are difficult to synthesize with traditional methods, can be feasibly produced by plasma synthesis within tens of seconds [18,90]. Furthermore, it is worth noting that traditional furnaces can be equipped with a moving bed/reciprocal device (Figure 6D), such that samples can be moved into and out of the high-temperature region at select time points for a precise control of heating and quenching of the samples. This has indeed been demonstrated in the synthesis of high-entropy alloys and SACs toward effective HER and CO₂ reduction [99,100].

Concluding remarks
In summary, ultrafast synthesis of electrocatalysts has been attracting increasing attention, due to the significant reduction of sample preparation time down to even the millisecond level, as compared to at least hours in conventional methods. Such a high time efficiency will be beneficial for the ready expansion of the library of electrocatalysts, and their high-throughput screening and scale-up production. More importantly, ultrafast synthesis can produce nonequilibrium structures that are unattainable with conventional methods and can break the thermodynamic limits for unprecedented electrocatalytic performances. Thus far, several techniques have been demonstrated based on Joule heating, microwave irradiation, laser ablation, and magnetic induction, among others, enabling both bottom-up and top-down preparation of a variety of composite catalysts, such as metals, oxides, nitrides, carbides, and chalcogenides. Nevertheless, mechanistic details of how these unique structures are formed have remained mostly elusive. In addition, the complexity of the material structures renders it challenging to correlate the structures of materials (e.g., size, morphology, composition, defect, and phase) with a specific electrocatalytic activity. Further research is strongly desired along these lines (see Outstanding questions). It is anticipated that an intimate integration with in silico simulations and operando characterizations will yield important insights and empower future research of ultrafast synthesis.

Acknowledgments
This work was supported in part by grants from the National Science Foundation (CHE-1900235 and CHE-2003685).

Declaration of interests
No competing interests are declared.

References
Trends in Chemistry, October 2022, Vol. 4, No. 10

12. Lu, B. et al. (2022) Ultrathin preparation of non-equilibrium FeNi spinels by magnetic induction heating for unprecedented oxygen evolution electrocatalysis. Research 2022, 9756893

13. Liu, Q. et al. (2022) Rapid preparation of carbon-supported ruthenium nanoparticles by magnetic induction heating for efficient hydrogen evolution reaction in both acidic and alkaline media. Surfactant Sci. 2, 335–346

33. Yang, C.P. et al. (2023) Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6644

34. Yao, Y.G. et al. (2021) Extreme mixing in nanoscale transition metal alloys. Mater. 4, 25340–25353

36. Dong, Q. et al. (2022) Rapid synthesis of high-entropy oxide microparticles. Small 18, 2104761

53. He, G.Y. et al. (2022) Laser-in situ synthesis of NiFe2O4 nanoparticle-anchored NiFe(001) nanosheets as advanced electrocatalysts for the oxygen evolution and urea oxidation reactions. Electrochim. Acta 411, 140074

77. Qiao, H.Y. et al. (2021) Soluble synthesis of high-entropy alloy nanoparticles by microwave heating. ACS Nano 15, 14928–14937

78. Kheradmandfarid, M. et al. (2021) Ultrafast green microwave-assisted synthesis of high entropy oxide nanoparticles for Li-ion battery applications. Mater. Chem. Phys. 262, 124265

80. Barforoush, J.M. et al. (2017) Microwave-assisted synthesis of a nanomorphous (Ni0.8Fe0.2) oxide oxygen-evolving electrocatalyst containing only “fast” sites. J. Mater. Chem. A 5, 11661–11670

86. Wang, B. et al. (2022) Nitrogen doped porous carbon polydral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free synthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 437, 135295

91. Nie, N.Z. et al. (2021) Superfast synthesis of densely packed and ultrafine Pt-lanthanide@KB via solvent-free microwave as efficient hydrogen evolution electrocatalysts. Small 17, 2102879

