Encapsulation of Pb-Free CsSnCl₃ Perovskite Nanocrystals with Bone Gelatin: Enhanced Stability and Application in Fe³⁺ Sensing

Dangge Gao,* Ying Zhang, Bin Lyu, Xu Guo, Yelin Hou, Jianzhong Ma,* Bingzhe Yu, and Shaowei Chen*

ABSTRACT: The toxicity of the Pb element limits the large-scale application of inorganic cesium—lead halide (CsPbX₃, with X = Cl, Br, and I) perovskite nanocrystals (NCs). Pb-free cesium—tin halide (CsSnX₃) NCs have emerged as a viable alternative because of its excellent photoelectric conversion efficiency. However, the applications are hampered by its poor stability and low photoluminescence quantum yield (PLQY). In this study, extraordinarily stable CsSnCl₃ NCs were prepared by exploiting bone gelatin as surface capping agents, which retain 95% of the photoluminescence intensity in water for 55 h. Additionally, after bone gelatin encapsulation, the PLQY of CsSnCl₃ NCs was found to increase from 2.17% to 3.13% for the uncapped counterparts because of an improved radiative recombination rate. With such remarkable optical properties of the bone gelatin—CsSnCl₃ NCs, metal ions like Fe³⁺ in aqueous solutions can be readily detected and monitored, signifying the potential application of such stable bone gelatin—CsSnCl₃ NCs in the development of fluorescence sensors and detectors.

1. INTRODUCTION

Perovskite nanocrystals (NCs) are a new kind of functional nanomaterial with a typical chemical formula of ABX₃, where A and B represent different metal cations and X refers to anions such as halogen. Inorganic NCs have been widely used in the field of photoelectronics because of their unique optical properties. Current research of NCs is mainly focused on inorganic cesium—lead halide (CsPbX₃, with X = Cl, Br, and I) NCs because of their high photoluminescence quantum yield (PLQY), narrow peak width, and ready manipulation of photoluminescence (PL) emission in the entire visible range. However, the Pb element in CsPbX₃ NCs may be leached in the form of water-soluble compounds into the environment, posing a threat to the environment and human health. Therefore, it is necessary to develop environmentally benign Pb-free NCs.

Among these, CsSnX₃ NCs are of particular interest thanks to their narrow band gap and low exciton binding energy, with a photoelectric conversion efficiency of up to 14.81%, which is the highest ever reported for Pb-free perovskite solar cells thus far. Therefore, CsSnX₃ NCs have been attracting extensive attention as viable alternatives to CsPbX₃ NCs in the field of optoelectronics. However, compared with CsPbX₃ NCs, CsSnX₃ NCs generally exhibit only poor stability, in which Sn²⁺ can be easily converted into Sn⁴⁺. Consequently, antioxidants, such as triphenylphosphine and triphenyl oxalate, have been used to impede the oxidation of Sn²⁺.

In addition, strong electron-withdrawing groups with large steric hindrance can strongly interact with Sn²⁺ and prevent the destruction of CsSnX₃ NCs by water and oxygen. For example, Wang et al. treated CsSnBr₃ films with perfluorooctanoic acid (PFOA), and the absorption strength of the films remained unchanged after being placed in air for 16 h. However, materials like PFOA often contain a pungent odor and may have a negative impact on the environment and human health. Furthermore, the materials used to coat NCs are often hydrophobic organics, such as superhydrophobic porous organic polymer frameworks and paraffin, which can reduce the water solubility of NCs and thus limit its application. Therefore, it remains a major challenge to develop environmentally friendly capping agents that can improve the stability and water solubility of CsSnX₃ NCs.

Bone gelatin is a water-soluble polymeric material obtained by the hydrolysis of collagen from animal bones and behaves as a kind of bidentate capping ligand, where the carboxyl and amino groups can strongly chelate to CsSnX₃ NCs and effectively improve the stability. In an early study, we
encapsulated CsSnCl₃ NCs with gelatin made from waste skin collagen. The obtained material retained 77.46% of the PL intensity after 3 days in water. Both bone gelatin and skin gelatin are natural polymers containing carboxyl, amino, and long molecular chains. The utilization of bone gelatin can enrich the source of capping reagents for NCs stabilization, rendering it possible to further explore their applications, such as fluorescence sensing of transition-metal ions like Fe³⁺.

Fe³⁺ is an essential trace element in organisms. However, when the content of Fe³⁺ in water exceeds the standard, it will affect the color and smell of water and could enter the human body through the food chain, causing harm to human health and the earth’s natural ecological environment. Hence, it is of critical significance to develop effective technologies for the sensitive detection of Fe³⁺ in water. PL-based methods have been attracting immense attention because of their high sensitivity, simplicity, and rapid response. In the past, optical approaches based on organic dyes, such as Rhodamine B, have often been used for Fe³⁺ detection, but their disadvantages are apparent, such as cumbersome functional group modification, low selectivity, and toxicity. In comparison to these conventional organic dyes, NCs possess outstanding properties, in particular, facile sample preparation and adjustable absorption across the optical spectrum, which make NCs an apparent, such as cumbersome functional group modification, low selectivity, and toxicity. In comparison to these conventional organic dyes, NCs possess outstanding properties, in particular, facile sample preparation and adjustable absorption across the optical spectrum, which make NCs an

In the present study, we describe a facile and low-cost procedure for the effective encapsulation of CsSnCl₃ NCs with bone gelatin, where the oxidation of Sn²⁺ to Sn⁴⁺ was markedly impeded during the growth of NCs. The results showed that the PLQY of bone gelatin–CsSnCl₃ NCs was 3.13%, markedly higher than that of the uncapped counterparts (2.17%). Because of the rich hydrophilic carboxyl and amino groups in bone gelatin, the capped CsSnCl₃ NCs exhibited good water solubility and, remarkably, also high sensitivity and selectivity in the detection of Fe³⁺ in water based on PL emission.

2. RESULTS AND DISCUSSION

2.1. Synthesis and Morphological Characterization of CsSnCl₃ NCs. As depicted in Scheme 1, bone gelatin was prepared by freeze-drying of animal bone powders treated with acid and alkali, and CsSnCl₃ NCs were synthesized separately via a thermal procedure with Cs₂CO₃ and SnCl₂ in a nitrogen atmosphere. Bone gelatin–CsSnCl₃ NCs were obtained by mixing bone gelatin and CsSnCl₃ NCs in glycerol at ambient temperature (details are given in the Supporting Information). From the Fourier transform infrared (FTIR) spectrum in Figure S1, the obtained bone gelatin can be seen to display several major vibrational bands at 1650, 1550, and 1230 cm⁻¹, which are characteristic of amides I (C=O stretching), II (N–H bending), and III (C–O stretching), respectively, indicating the formation of a special triple-helix conformation. The morphology of bone gelatin was then characterized by scanning electron microscopy (SEM) measurements. Figure S2a depicts a representative SEM image of bone gelatin, which exhibited a lamellar structure and a somewhat rough surface.

The dimensions and morphology of the CsSnCl₃ NCs and bone gelatin–CsSnCl₃ NCs were first examined and compared by transmission electron microscopy (TEM) measurements. In Figure S3, we can see that the CsSnCl₃ NCs exhibited a cubic shape with an average size of 25 ± 5 nm. After bone gelatin coating, the average size of the CsSnCl₃ NCs reached 38 ± 5 nm.
nm. From the high-resolution TEM image in Figure 1b, well-defined lattice fringes can be seen with an interplanar spacing of 0.327 nm, corresponding to the (111) surfaces of the CsSnCl3 NCs in Figure S3b (JCPDS 74-2058). Additionally, energy-dispersive spectroscopy (EDS)-based elemental mapping analysis (Figure 1c−g) showed that the elements of Cl, Cs, and Sn were enriched within the dark regions of the bright-field TEM image, whereas the element Mg in bone gelatin was distributed rather evenly across the sample. Among them, the Mg element came from bone gelatin and the Cl, Cs, and Sn elements came from the CsSnCl3 NCs, suggesting uniform encapsulation of the CsSnCl3 NCs within bone gelatin.

2.2. Optical Properties and Stability Characterization. Encapsulation of CsSnCl3 NCs with bone gelatin led to a marked variation of the optical properties. The PL emission and absorption spectra of bone gelatin, CsSnCl3 NCs, and bone gelatin−CsSnCl3 NCs are shown in Figure 2a. The as-prepared CsSnCl3 NCs dispersed in cyclohexane exhibited a characteristic absorption peak at 349 nm and an emission maximum (λem) at 436 nm. Such absorption and emission characteristics were retained after bone gelatin coating, indicating that bone gelatin did not introduce distortion in the band energy of the CsSnCl3 NCs. However, the (normalized) emission intensity of bone gelatin−CsSnCl3 NCs was markedly higher than the sum of bone gelatin and CsSnCl3 NCs. This is likely because the long molecular chains...
of bone gelatin facilitate the effective encapsulation of CsSnCl$_3$ NCs and reduce the surface defects, thus enhancing the fluorescence emission of CsSnCl$_3$ NCs.

It is well-known that the Sn$^{2+}$ of CsSnCl$_3$ NCs can be easily oxidized to Sn$^{4+}$ under ambient conditions, which compromises the material structural stability. Therefore, we compared the stability of CsSnCl$_3$ NCs with and without bone gelatin encapsulation in water and under photoirradiation. Figure 2b shows the variation of the PL emission intensity of CsSnCl$_3$ NCs with and without bone gelatin capping dispersed in water for up to 60 h. It can be seen that only 35% of the initial PL intensity was retained with the uncapped CsSnCl$_3$ NCs in water after only 7 h. By sharp contrast, the bone gelatin–CsSnCl$_3$ NCs remained at 95% of the PL intensity after being dispersed in water for 55 h (Figure 2b). Note that the latter is also markedly higher than that of skin gelatin–CsSnCl$_3$ NCs reported previously (80% retention after 48 h),11 most likely because of the high carboxyl content in bone gelatin compared to that in skin gelatin (Table S2), considering that the carboxyl moiety is the point of anchor on the NCs.25

Figure 2c shows the normalized PL emission decay profiles of CsSnCl$_3$ NCs with and without bone gelatin encapsulation. After bone gelatin modification, the PLQY of CsSnCl$_3$ NCs was found to increase from 2.17% to 3.13% and the average fluorescent lifetime (τ_{av}) increased from 5.56 to 7.11 ns. As can be seen from Table 1, τ_{av} and PLQY of the bone gelatin–CsSnCl$_3$ NCs were even higher than those of other Pb-free NCs reported in the literature. This suggests a reduced content of structural defects (trap states) within the NCs after surface functionalization with bone gelatin.

Figure 2d shows the radiative (Γ_{rad}) and nonradiative (Γ_{nonrad}) recombination rates for CsSnCl$_3$ NCs with and without bone gelatin encapsulation, which are estimated by the following equations:$$\Gamma_{rad} = \frac{PLQY}{\tau_{av}} \quad (1)$$$$\Gamma_{nonrad} = \frac{1}{\tau_{av}} - PLQY \quad (2)$$

Obviously, after bone gelatin coating, the nonradiation recombination rate of CsSnCl$_3$ NCs decreased from 175.95 to 136.25 μs$^{-1}$, whereas the radiation recombination rate increased from 3.90 to 4.46 μs$^{-1}$. This suggests that bone gelatin effectively stabilized the excited state by suppressing the formation of nonradiative recombination pathways.

ζ-potential analysis (Figure 3) shows that the isoelectric point (pI) of bone gelatin was 5.37, which decreased somewhat

Figure 4. N 1s XPS spectra of (a) bone gelatin and (b) bone gelatin–CsSnCl$_3$ NCs. (c) Sn 3d$_{5/2}$ XPS spectra of bone gelatin–CsSnCl$_3$ NCs and CsSnCl$_3$ NCs.
to 4.75 with bone gelatin–CsSnCl₃ NCs. Note that bone gelatin is an amphoteric electrolyte, where the pI is related to the ratio of the −COOH to −NH₂ moieties.²⁸ In the bone gelatin–CsSnCl₃ NCs, it is likely that the −COO⁻ groups bind to Sn²⁺, which promoted the ionization of −COOH and led to a decreased pI.

X-ray photoelectron spectroscopy (XPS) measurements were then carried out to analyze the surface chemical composition and valence states of the samples. Figure S4a shows the peaks of C 1s, N 1s, and O 1s in bone gelatin. From the survey spectrum in Figure S4b, the elements of C 1s, N 1s, O 1s, Cs, Sn, and Cl 2p can be clearly resolved. It can be seen from the fitting peaks of N 1s in Figure 4b that, in addition to the N−H peak at 399.6 eV and the N−C peak at 400.8 eV in bone gelatin (Figure 4a), there was also a Sn−N peak at 399.9 eV.¹¹ This suggests that encapsulation of the CsSnCl₃ NCs was due to coordination of the −NH₂ of bone gelatin to the Sn²⁺ centers in the NCs. The content of Sn⁴⁺ in CsSnCl₃ NCs and bone gelatin–CsSnCl₃ NCs was determined by deconvolution of the XPS spectra of Sn 3d⁵/₂.²⁹ Both CsSnCl₃ NCs and bone gelatin–CsSnCl₃ NCs were determined after 2 days of exposure to oxygen. As shown in

Figure 5. (a) PL emission intensity at 349 nm of bone gelatin–CsSnCl₃ NCs with the addition of a range of cations and anions at a concentration of 0.2 mM. (b) PL emission spectra of bone gelatin–CsSnCl₃ NCs with the addition of Fe³⁺ ions at various concentrations. (c) Stern−Volmer plots for the F_0/F values and different Fe³⁺ ion concentrations.

Figure 6. (a) PL emission spectrum of bone gelatin–CsSnCl₃ NCs and absorption spectra with the addition of different ions (0.2 mM) in aqueous solution. (b) Diagram of the detection mechanism of bone gelatin–CsSnCl₃ NCs for Fe³⁺ ions.
Figure 4c, the Sn⁴⁺ content was considerably lower in bone gelatin–CsSnCl₃ NCs, indicating greatly suppressed Sn²⁺ oxidation. This is because the protective effect of bone gelatin increases the antioxidant capacity of CsSnCl₃ NCs.

2.3. Fe³⁺ Ion Sensing. With their good water stability and antioxidant capacity, bone gelatin–CsSnCl₃ NCs displayed great potential as a PL sensor for metal ions in aqueous media. From Figure 5a, we can see that the PL emission intensity at 349 nm of bone gelatin–CsSnCl₃ NCs in water diminished somewhat upon the addition of a range of metal cations and anions at a concentration of 0.2 mM, such as Cl⁻, SO₄²⁻, HCO₃⁻, NO₃⁻, OH⁻, Zn²⁺, Al³⁺, Ca²⁺, Mg²⁺, and Co²⁺, and was almost completely quenched by Fe³⁺. This suggests that bone gelatin–CsSnCl₃ NCs may serve as a unique sensing platform for Fe³⁺.

As shown in Figure 5b, with an increase in the Fe³⁺ concentrations, the PL intensity of bone gelatin–CsSnCl₃ NCs decreased accordingly, which can be fitted by the Stern–Volmer equation:

\[F_0/F = 1 + K_s[C] \]

where \(F_0 \) and \(F \) represent the PL emission intensities of the bone gelatin–CsSnCl₃ NCs in the absence and presence of a Fe³⁺ ion, respectively, [C] is the concentration of Fe³⁺, and \(K_s \) is a Stern–Volmer constant. Linear regression yields the relationship \(F_0/F = 0.735 + 4.609[C] \), with a correlation coefficient \((R^2) = 0.97022 \) and a quenching constant \((K_s) = 4.6 \times 10^5 \text{M}^{-1} \). The calibration curve shows the linear ranges from 0 to 2000 µM, and the limit of detection was calculated to be 8 µM \((S/N = 3)\).

The PL spectrum of bone gelatin–CsSnCl₃ NCs and the absorption spectra upon the addition of different ions (0.2 mM) in aqueous solution are shown in Figure 6a. Compared with other ions, only the absorption spectrum of Fe³⁺ overlapped significantly with the emission profile of the bone-gelatin-capped CsSnCl₃ NCs, suggesting that quenching of the PL emission was due to fluorescence resonance energy transfer (FRET). A mechanism of action between bone-gelatin–CsSnCl₃ NCs and Fe³⁺ was proposed and is shown in Figure 6b, where bone gelatin–CsSnCl₃ NCs and Fe³⁺ serve as the energy donor and acceptor, respectively. In the absence of Fe³⁺, bone gelatin–CsSnCl₃ NCs will fluoresce once the electrons in the NCs are excited and radiation transition occurs. In the presence of sufficient Fe³⁺, the energy of bone gelatin–CsSnCl₃ NCs is transferred to Fe³⁺, which inhibits its radiation transition and causes fluorescence quenching of the NCs.

3. CONCLUSIONS

In summary, highly stable bone gelatin–CsSnCl₃ NCs were prepared by the simple mixing of bone gelatin and CsSnCl₃ NCs. This is most likely due to the –COOH and –NH₂ moieties in bone gelatin that effectively passivate the surface defects of CsSnCl₃ NCs. The long molecular chains of bone gelatin helped to facilitate the encapsulation of CsSnCl₃ NCs within the polymer matrix and inhibit the degradation and oxidation of CsSnCl₃ NCs in water or under photoradiation. Notably, with bone gelatin encapsulation, the CsSnCl₃ NCs showed a higher PLQY and longer \(\tau _v \) than the uncapped counterparts. The excellent water stability and PL emissive properties of the bone gelatin-passivated NCs could be exploited as fluorescence probes to monitor Fe³⁺ in aqueous solution, likely because of FRET.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c00354.

Experimental details, FTIR and XPS spectra, SEM and TEM images, GPC curve, carboxyl and amino group contents, and molecular weights (PDF)

AUTHOR INFORMATION

Corresponding Authors

Dangge Gao — College of Bioresources Chemical and Materials Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China; Xi’an Key Laboratory of Green Chemicals and Functional Materials, Xi’an, Shaanxi 710021, China; orcid.org/0000-0002-3668-8551; Email: majz@sust.edu.cn

Jianzhong Ma — College of Bioresources Chemical and Materials Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China; Xi’an Key Laboratory of Green Chemicals and Functional Materials, Xi’an, Shaanxi 710021, China; orcid.org/0000-0003-0512-702X; Email: majz@sust.edu.cn

Shaowei Chen — Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States; orcid.org/0000-0002-3668-8551; Email: shaowei@ucsc.edu

Authors

Ying Zhang — College of Bioresources Chemical and Materials Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China; Xi’an Key Laboratory of Green Chemicals and Functional Materials, Xi’an, Shaanxi 710021, China

Bin Lyu — College of Bioresources Chemical and Materials Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China; Xi’an Key Laboratory of Green Chemicals and Functional Materials, Xi’an, Shaanxi 710021, China

Yelin Hou — College of Bioresources Chemical and Materials Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China; Xi’an Key Laboratory of Green Chemicals and Functional Materials, Xi’an, Shaanxi 710021, China

Bingzhe Yu — Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.2c00354
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work is supported financially by the Science Foundation for Distinguished Young Scholars of Shaanxi Natural Science Basic Research Program (Grant 2020-JC-47), National Natural Science Foundation of China (Grant 22178210), High-level Talents Special Support Plan Youth Talents Project of Shaanxi Province, and Innovation Capability Support Program of Shaanxi (Grant 2021TD-16). S.W.C. thanks the National Science Foundation (Grant CHE-2003685) for partial support of this work.

■ REFERENCES

