The smooth closing lemma for area-preserving maps of surfaces

Dan Cristofaro-Gardiner

University of Maryland

Brown University
November 3, 2021
1. The Closing Lemma

2. Background: the Calabi invariant

3. A Weyl law and the idea of the proof

4. The Periodic Floer homology spectral invariants

5. Impressionistic sketch of the Weyl law
Section 1

The Closing Lemma
Some questions

Let p be a non-wandering point of a diffeomorphism $S : M \rightarrow M$ of a compact manifold. Can S be arbitrarily well approximated in C^r by $T : M \rightarrow M$, so that p is a periodic point of T?

Non-wandering point p: $S^k U \cap U \neq \emptyset$ for each neighborhood U of p. Pugh: true in C^1 topology (1967).

Question (Franks-Le Calvez, ’00; Xia: Poincaré ’99)

For a generic C^r area-preserving diffeomorphism of a compact surface, is the union of periodic points dense?

Pugh-Robinson (’80s): true in the C^1 topology.
The Closing Lemma

Background: the Calabi invariant
A Weyl law and the idea of the proof
The Periodic Floer homology spectral invariants
Impressionistic sketch of the Weyl law

Today’s theorem

Theorem (CG., Prasad, Zhang)

A generic element of $\text{Diff}(\Sigma, \omega)$ has a dense set of periodic points. More precisely, the set of elements of $\text{Diff}(\Sigma, \omega)$ without dense periodic points forms a meager subset in the C^∞-topology.

Definition of meager: countable union of nowhere dense subsets.

Remarks:

- Case $\Sigma = S^2$ previously shown by Asaoka-Irie (2015); in fact, they prove this for any Hamiltonian diffeomorphism of any closed surface Σ.
- Case $\Sigma = T^2$ proved simultaneously to us by Edtmair-Hutchings using related, but different methods.
Section 2

Background: the Calabi invariant
A pair \((M^{2n}, \omega)\) with \(\omega\) a differential 2-form is called a **symplectic manifold** if \(d\omega = 0, \omega \wedge \ldots \wedge \omega\) a volume form.

Example: any surface with area form.

Any \(H : S^1 \times M^{2n} \to \mathbb{R}\) induces a corresponding (possibly time varying) **Hamiltonian vector field** \(X_{H_t}\) by the rule

\[
\omega(X_{H_t}, \cdot) = dH_t(\cdot).
\]

Denote its flow by \(\psi^t_H\).
Let $\text{Diffeo}_c(D^2, dx \wedge dy)$ denote the set of diffeomorphisms

$$f : D^2 \to D^2, f^*(dx \wedge dy) = dx \wedge dy, f = id \text{ near } \partial D^2.$$

There is a surjective homomorphism Calabi

$$\text{Cal} : \text{Diffeo}_c(D^2, dx \wedge dy) \to \mathbb{R},$$

defined as follows:

- Given $\varphi \in \text{Diffeo}_c(D^2, dx dy)$, write $\varphi = \varphi^1_H$, $H = 0$ near ∂D^2.
- Define $\text{Cal}(\varphi) := \int_{D^2} \int_{S^1} H dt dx dy$.
- Fact: $\text{Cal}(\varphi)$ doesn’t depend on choice of H!
The Calabi invariant

Calabi measures the “average rotation” of the map φ:

$$Cal(\varphi) = \int \int Var_{t=0}^{t=1} Arg(\varphi_H^t(x) - \varphi_H^t(y)) \, dx \, dy.$$
Section 3

A Weyl law and the idea of the proof
Warm-up case: compactly supported disc maps

We’ll first explain the idea in the case of
\(G := \text{Diffeo}_c(D^2, dx \wedge dy) \). We’ll define a sequence of maps

\[
c_d : \text{Diffeo}_c(D^2, dx \wedge dy) \rightarrow \mathbb{R}
\]

with the following properties:

- (Continuity.) Each \(c_d \) is continuous (e.g. in \(C^0 \) topology).
- (Spectrality.) For any \(\varphi \in G \), \(c_d(\varphi) \) is the action of a set of periodic points of \(\varphi \).
- (Weyl Law.) \(\lim_{d \to \infty} \frac{c_d(\varphi)}{d} = \text{Cal}(\varphi) \)

We can now sketch proof of the key fact: given \(U \) open, nonzero \(H \geq 0 \) supported in \(U \), \(\varphi \circ \psi_H^t \) has a periodic point in \(U \) for some \(0 \leq t \leq 1 \).
Background: the action

What is the action?

Background: On \((S^2, \omega)\), any \(H \in C^\infty(S^1 \times S^2)\) has an associated action functional

\[
A_H(z, u) = \int_0^1 H(t, z(t))dt + \int_{D^2} u^* \omega
\]

defined on capped loops \((z, u)\).

- Critical points of \(H\): capped 1-periodic orbits of \(\varphi^t_H\).
- Critical values of \(H\): called the action spectrum \(Spec(H)\), has Lebesgue measure 0.
- Fact: Each \(c_d(\varphi^1_H) \in Spec_d(H)\) the degree \(d\) action spectrum, also has measure 0.
A similar argument works over an arbitrary closed surface Σ. Main challenge: in finding a Weyl law, Calabi homomorphism not in general defined. For example, $\text{Diff}(S^2, \omega_{\text{std}})$ is a simple group!

Solution: We prove a “relative” Weyl law recovering a “relative” Calabi invariant.

Statement of relative Weyl law: take $\varphi \in \text{Diff}(\Sigma, \omega)$, fix $U \subset \Sigma$ open, H compactly supported in U. Then we define c_d analogously to above and show the relative Weyl law:

$$
\lim_{d \to \infty} \frac{c_d(\varphi \circ \psi^1_H) - c_d(\varphi)}{d} = \int_0^1 \int_U H\omega dt.
$$
Section 4

The Periodic Floer homology spectral invariants
Our proof builds on a great story due to Hutchings, Lee, Taubes.

Let $\varphi \in \text{Diffeo}(\Sigma, \omega)$. Recall the **mapping torus**

$$Y_\varphi = \Sigma \times [0, 1]_t / \sim, \quad (x, 1) \sim (\varphi(x), 0).$$

Has a canonical vector field

$$R := \partial_t,$$

a canonical two-form ω_φ induced by ω, and a canonical plane field $\xi = \text{Ker}(dt)$.
The definition of PFH

Useful for us to assume **monotonicity equation:**

\[c_1(\xi) + 2PD(\Gamma) = \lambda [\omega_\varphi] \]

for some \(\Gamma \in H_1(Y_\varphi), \lambda \in \mathbb{R} \). There’s a **degree map**
\[d : H_1(Y_\varphi) \to H_1(S_1) = \mathbb{Z}, \]
and we also assume \(d(\Gamma) \) sufficiently large.

The \(\mathbb{Z}_2 \) vector space \(PFH(\varphi, \Gamma) \) is homology of a chain complex \(PFC(\varphi, \Gamma) \), (for nondegenerate \(\varphi \)). Details of \(PFC(\varphi, \Gamma) \):

- Freely generated by sets \(\{ (\alpha_i, m_i) \} \), where
- \(\alpha_i \) distinct, embedded closed periodic orbits of \(R \)
- \(m_i \) positive integer; (\(m_i = 1 \) if \(\alpha_i \) is hyperbolic)
- \(\sum m_i[\alpha_i] = \Gamma \).
The differential

- Differential ∂ counts $I = 1$ J-holomorphic curves in $X := \mathbb{R} \times Y_\varphi$, for generic J, where I is the “ECH index”. That is:
 \[\langle \partial \alpha, \beta \rangle = \# \mathcal{M}^I_j(\alpha, \beta) \]

- $J : TX \rightarrow TX, J^2 = -1$, \mathbb{R}-invariant (and admissible)

- ECH index beyond scope of talk; basic idea: $I = 1$ forces curves to be mostly embedded,

- Definition of J-holomorphic curve:
 \[u : (C, j) \rightarrow (X, J), \quad du \circ j = J \circ du. \]
The Closing Lemma
Background: the Calabi invariant
A Weyl law and the idea of the proof
The Periodic Floer homology spectral invariants
Impressionistic sketch of the Weyl law

The differential

α

β

γ_{φ}

\mathbb{R}

Figure: A J-hol curve contributing to $\langle \partial \alpha, \beta \rangle$.
Write $T^2 = [0, 1]^2 / \sim$.

Let $S : T^2 \to T^2$ be an irrational shift. This has no periodic points at all! So PFH vanishes (other than the empty set).
Example 2: an irrational rotation of S^2

Let φ be an irrational rotation of S^2. This has two fixed points p_+, p_-. One can check $I(C) \in 2\mathbb{Z}$ for any curve C. Conclusion: differential vanishes.

So, degree 1 part generated by $p_+, p_-; \text{ degree 2 part generated by } p_+^2, p_+p_-, p_-^2 \text{ etc. } \implies \text{ Rank } PFH(S^2, d) = d + 1.$
Lee-Taubes showed that there is a canonical isomorphism

$$PFH(\varphi, \Gamma) \cong \widehat{HM}_{c_{-}}(Y_{\varphi}, s_{\Gamma}),$$

where $\widehat{HM}_{c_{-}}$ is the (negative monotone) Seiberg-Witten Floer cohomology of Y_{φ} in the spin-c structure s_{Γ} corresponding to Γ.

This gives a bridge between low-dimensional topology and surface dynamics that is central to our proofs.
Application 1: generic non-vanishing of PFH

Theorem (CG., Prasad, Zhang)

Fix a closed surface Σ. Then for C^∞-generic φ, there exists classes $\Gamma_d \in H_1(Y_{\varphi})$ with degrees tending to $+\infty$ such that

$$PFH(\Sigma, \varphi, \Gamma_d) \neq 0.$$

Compare with our earlier T^2 example. Upshot: there is a lot of nonzero homology for defining invariants.
Twisted PFH

To get quantitative information, Hutchings’ observed one can work with a “twisted” version of PFH; homology of a complex $\widetilde{PFC}(\varphi, \Theta)$.

Details of $\widetilde{PFC}(\varphi, \Theta)$:
- Choose a (trivialized) reference cycle Θ with $[\Theta] = \Gamma$ in H_1.
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair (α, Z), $Z \in H_2(\alpha, \Theta)$
- ∂ counts $I = 1$ curves C from (α, Z) to (β, Z'):
 - this means: C a curve from α to β, with $Z = [C] + [Z']$.

Then \widetilde{PFH} has an action defined by $A(\alpha, Z) = \int_Z \omega \varphi$ and for any nonzero $\sigma \in \widetilde{PFH}(\varphi, \Theta)$ we can define $c_\sigma(\varphi)$ to be the minimum action required to represent it. We call this the spectral invariant associated to σ.
Section 5

Impressionistic sketch of the Weyl law
The proof of the Weyl law is beyond the scope of the talk. Very rough idea: the Seiberg-Witten equations are equations for a pair \((A, \Psi)\), where \(\Psi\) is a section of \(s_{\Gamma}\) and \(A\) is a spin-c connection.

The configurations with \(\Psi = 0\) are called **reducible** and can be described explicitly. In fact, there is a Floer homology for reducibles computable by classical topology.

We define a “Seiberg-Witten” spectral invariant, compute it for the reducibles, and show that it does not change much when compared with PFH via the Lee-Taubes isomorphism.