The simplicity conjecture

Dan Cristofaro-Gardiner

IAS
Zoom
April 3, 2020

(1) Introduction

(1) Introduction

(2) Idea of the proof

(1) Introduction

(2) Idea of the proof
(3) Outline of the argument

(1) Introduction

(2) Idea of the proof
(3) Outline of the argument
(4) PFH spectral invariants - impressionistic sketch
(1) Introduction
(2) Idea of the proof
(3) Outline of the argument
(4) PFH spectral invariants - impressionistic sketch
(5) Remarks on the rest of the proof

Section 1

Introduction

An old theorem of Fathi

$\operatorname{Homeo}_{c}\left(D^{n}, \omega\right)$: group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

An old theorem of Fathi

$\operatorname{Homeo}_{c}\left(D^{n}, \omega\right)$: group of volume-preserving homeomorphisms of the n -disc, identity near the boundary.

Theorem (Fathi, '80)
$\operatorname{Homeo}_{c}\left(D^{n}, \omega\right)$ is simple when $n \geq 3$.
(Definition of simple: no non-trivial proper normal subgroups.)

An old theorem of Fathi

$\operatorname{Homeo}_{c}\left(D^{n}, \omega\right)$: group of volume-preserving homeomorphisms of the n -disc, identity near the boundary.

Theorem (Fathi, '80)
$\operatorname{Homeo}_{c}\left(D^{n}, \omega\right)$ is simple when $n \geq 3$.
(Definition of simple: no non-trivial proper normal subgroups.)
Question (Fathi, 1980)
Is the group $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ simple?

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

 $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple.
Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

 $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple.Define $\operatorname{Homeo}_{0}\left(S^{2}, \omega\right)$: area-preserving homeos. of S^{2}, in component of the identity.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

 $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple.Define $\operatorname{Homeoo}_{0}\left(S^{2}, \omega\right)$: area-preserving homeos. of S^{2}, in component of the identity.

Corollary
$\operatorname{Homeo}_{0}\left(S^{2}, \omega\right)$ is not simple.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

 Homeo $_{c}\left(D^{2}, \omega\right)$ is not simple.Define $\operatorname{Homeoo}_{0}\left(S^{2}, \omega\right)$: area-preserving homeos. of S^{2}, in component of the identity.

Corollary

Homeoo $\left(S^{2}, \omega\right)$ is not simple.
S^{2} the only closed manifold for which simplicity of $\operatorname{Homeo}_{0}(M, \omega)$ not known.

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\operatorname{Homeo}_{0}\left(S^{n}\right)$ simple?

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $\operatorname{Diff}_{0}^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $\operatorname{Diff}_{0}^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \geq 3$. (Thurston)

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $\operatorname{Diff}_{0}^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \geq 3$. (Thurston)
- Symplectic case: kernel of flux simple when manifold closed; if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)

History; comparisons

- Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(S^{n}\right)$ simple?
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $\operatorname{Diff}_{0}^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \geq 3$. (Thurston)
- Symplectic case: kernel of flux simple when manifold closed; if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)
- Volume preserving homeomorphisms: there is a "mass flow" homomorphism; kernel is simple for $n \geq 3$ (Fathi). $n=2$ case mysterious before our work.

Our case - comparison

In comparison, our case seems more wild!

Our case - comparison

In comparison, our case seems more wild!

- Not simple,

Our case - comparison

In comparison, our case seems more wild!

- Not simple,
- but (as far as we know) no obvious natural homomorphism out of $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ either

Remark on some historical motivation

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.
eg:

- Homeoo (M) simple iff M connected

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.
eg:

- Homeoo (M) simple iff M connected
- (Whittaker, '63): any iso. $\mathrm{Homeo}_{0}(M) \longrightarrow$ Homeo $_{0}(N)$ induced by a homeomorphism $M \longrightarrow N$.

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.
eg:

- Homeoo (M) simple iff M connected
- (Whittaker, '63): any iso. $\mathrm{Homeo}_{0}(M) \longrightarrow$ Homeo $_{0}(N)$ induced by a homeomorphism $M \longrightarrow N$.
- (Filipkiewicz, '82): an iso. $\operatorname{Diff}_{0}^{r}(M) \longrightarrow \operatorname{Diff}_{0}^{s}(N)$ implies $r=s, M, N C^{r}$-diffeomorphic (requires M, N compact)

Why doesn't Fathi's proof work in dim 2?

Le Roux:

Why doesn't Fathi's proof work in dim 2?

Le Roux:

- Fathi's proof uses a "fragmentation" result: for any $\varphi \in \operatorname{Home}_{c}\left(D^{n}, \omega\right), n \geq 3$, have $\varphi=f g, f$ and g supported on discs of $3 / 4$ volume. Fails in dimension 2.

Why doesn't Fathi's proof work in dim 2?

Le Roux:

- Fathi's proof uses a "fragmentation" result: for any $\varphi \in \operatorname{Home}_{c}\left(D^{n}, \omega\right), n \geq 3$, have $\varphi=f g, f$ and g supported on discs of $3 / 4$ volume. Fails in dimension 2.
- Le Roux shows: simplicity in $n=2$ case equivalent to another fragmentation property.

Why doesn't Fathi's proof work in dim 2?

Le Roux:

- Fathi's proof uses a "fragmentation" result: for any $\varphi \in \operatorname{Home}_{c}\left(D^{n}, \omega\right), n \geq 3$, have $\varphi=f g, f$ and g supported on discs of $3 / 4$ volume. Fails in dimension 2.
- Le Roux shows: simplicity in $n=2$ case equivalent to another fragmentation property.

Our work shows this fragmentation property does not hold.

Section 2

Idea of the proof

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

$$
\text { Cal : } \text { Diffeo }_{c}\left(D^{2}, \omega\right) \longrightarrow \mathbb{R}
$$

defined as follows:

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

$$
\text { Cal : } \text { Diffeo }_{c}\left(D^{2}, \omega\right) \longrightarrow \mathbb{R}
$$

defined as follows:

- Given $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, \omega\right)$, write $\varphi=\varphi_{H}^{1}$,

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

$$
\text { Cal : } \text { Diffeo }_{c}\left(D^{2}, \omega\right) \longrightarrow \mathbb{R}
$$

defined as follows:

- Given $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, \omega\right)$, write $\varphi=\varphi_{H}^{1}, H=0$ near ∂D^{2}.

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

$$
\text { Cal : } \text { Diffeo }_{c}\left(D^{2}, \omega\right) \longrightarrow \mathbb{R}
$$

defined as follows:

- Given $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, \omega\right)$, write $\varphi=\varphi_{H}^{1}, H=0$ near ∂D^{2}.
- Define Cal $(\varphi):=\int_{D^{2}} \int_{S^{1}} H d t \omega$.

The Calabi invariant

Diffeo $_{c}\left(D^{2}, \omega\right)$ is not simple.
There is a non-trivial homomorphism Calabi.

$$
\text { Cal : } \text { Diffeo }_{c}\left(D^{2}, \omega\right) \longrightarrow \mathbb{R}
$$

defined as follows:

- Given $\varphi \in \operatorname{Diffeo}_{c}\left(D^{2}, \omega\right)$, write $\varphi=\varphi_{H}^{1}, H=0$ near ∂D^{2}.
- Define Cal $(\varphi):=\int_{D^{2}} \int_{S^{1}} H d t \omega$.
- Fact: $\mathrm{Ca} /(\varphi)$ doesn't depend on choice of H !

Naive idea

There's an inclusion

$$
\operatorname{Diffeo}_{c}\left(D^{2}, \omega\right) \subset \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)
$$

dense in C^{0} topology.

Naive idea

There's an inclusion

$$
\operatorname{Diffeo}_{c}\left(D^{2}, \omega\right) \subset \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)
$$

dense in C^{0} topology. Can we extend Calabi?

Naive idea

There's an inclusion

$$
\operatorname{Diffeo}_{c}\left(D^{2}, \omega\right) \subset \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)
$$

dense in C^{0} topology. Can we extend Calabi?
Problem: Cal not C^{0} continuous.

Naive idea

There's an inclusion

$$
\operatorname{Diffeo}_{c}\left(D^{2}, \omega\right) \subset \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)
$$

dense in C^{0} topology. Can we extend Calabi?
Problem: Cal not C^{0} continuous.
eg: Consider H_{n}, supported on disc around origin of area $1 / n$, where $H_{n} \approx n$.

Naive idea

There's an inclusion

$$
\operatorname{Diffeo}_{c}\left(D^{2}, \omega\right) \subset \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)
$$

dense in C^{0} topology. Can we extend Calabi?
Problem: Cal not C^{0} continuous.
eg: Consider H_{n}, supported on disc around origin of area $1 / n$, where $H_{n} \approx n . \operatorname{Cal}\left(\varphi_{H_{n}}^{1}\right) \approx 1, C^{0}$ converges to the identity.

Introduction
 Idea of the proof
 Outline of the argument
 PFH spectral invariants - impressionistic sketch Remarks on the rest of the proof

Battle plan

Idea to get around this:

Battle plan

Idea to get around this:

- For $\varphi \in$ Diffeo $_{c}$, use "PFH spectral invariants" $c_{d}(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".

Battle plan

Idea to get around this:

- For $\varphi \in$ Diffeo $_{c}$, use "PFH spectral invariants" $c_{d}(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_{d}(\varphi)$ are C^{0} continuous, so extend to Homeo_{c}

Battle plan

Idea to get around this:

- For $\varphi \in$ Diffeo $_{c}$, use "PFH spectral invariants" $c_{d}(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_{d}(\varphi)$ are C^{0} continuous, so extend to Homeo_{c}
- Prove "enough" of Hutchings' conjecture:

Battle plan

Idea to get around this:

- For $\varphi \in$ Diffeo $_{c}$, use "PFH spectral invariants" $c_{d}(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_{d}(\varphi)$ are C^{0} continuous, so extend to $H_{o m e o}^{c}$
- Prove "enough" of Hutchings' conjecture:

$$
\lim _{d \longrightarrow \infty} \frac{c_{d}(\varphi)}{d}=\operatorname{Cal}(\varphi)
$$

on Diffeo ${ }_{c}$. (Inspired by "Volume Conjecture" for ECH.)

Section 3

Outline of the argument

Finite Hofer energy homeomorphisms

To prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ not simple, need a normal subgroup.

Finite Hofer energy homeomorphisms

To prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ not simple, need a normal subgroup.
Say $\varphi \in \operatorname{FHomeo}_{c}\left(D^{2}, \omega\right)$ - "finite Hofer energy homeomorphisms" - if there exists

$$
\varphi_{H_{i}}^{1} \longrightarrow C^{0} \varphi, \quad\left\|H_{i}\right\|_{1, \infty} \leq M,
$$

for M independent of i.

Finite Hofer energy homeomorphisms

To prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ not simple, need a normal subgroup.
Say $\varphi \in F \operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ —" "finite Hofer energy homeomorphisms" - if there exists

$$
\varphi_{H_{i}}^{1} \longrightarrow C^{0} \varphi, \quad\left\|H_{i}\right\|_{1, \infty} \leq M
$$

for M independent of i. Here, $\left\|H_{i}\right\|_{1, \infty}$ is the Hofer norm

$$
\left\|H_{i}\right\|_{1, \infty}=\int_{0}^{1} \max \left(H_{i}\right)-\min \left(H_{i}\right) d t
$$

The infinite twist

We show: $\mathrm{FHomeo}_{c} \unlhd \mathrm{Homeo}_{c}$.

The infinite twist

We show: $\mathrm{FHomeo}_{c} \unlhd \mathrm{Homeo}_{c}$.
Hard part: why proper?

The infinite twist

We show: $\mathrm{FHomeo}_{c} \unlhd \mathrm{Homeo}_{c}$.
Hard part: why proper?
Define a monotone twist φ_{f} to be

$$
(r, \theta) \longrightarrow(r, \theta+2 \pi f(r)),
$$

where $f(r)$ non-increasing.

The infinite twist

We show: $\mathrm{FHomeo}_{c} \unlhd \mathrm{Homeo}_{c}$.
Hard part: why proper?
Define a monotone twist φ_{f} to be

$$
(r, \theta) \longrightarrow(r, \theta+2 \pi f(r)),
$$

where $f(r)$ non-increasing.
Call φ_{f} an infinite twist if

$$
\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r=\infty
$$

Motivation

The idea of the condition

$$
\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r=\infty
$$

Motivation

The idea of the condition

$$
\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r=\infty
$$

is that for monotone twists $\varphi \in$ Diffeo $_{c}$,

$$
\operatorname{Cal}\left(\varphi_{f}\right)=\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r
$$

Motivation

The idea of the condition

$$
\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r=\infty
$$

is that for monotone twists $\varphi \in$ Diffeo $_{c}$,

$$
\operatorname{Cal}\left(\varphi_{f}\right)=\int_{0}^{1} \int_{r}^{1} s f(s) d s r d r
$$

So, morally, infinite twists "should" have infinite Calabi invariant.

Asymptotic arguments

We need to show: $\varphi_{f} \notin$ FHomeo $_{c}$.

Asymptotic arguments

We need to show: $\varphi_{f} \notin$ FHomeo $_{c}$.
The argument will go like this:

Asymptotic arguments

We need to show: $\varphi_{f} \notin$ FHomeo $_{c}$.
The argument will go like this:

- (A) For any $\varphi \in \mathrm{FHomeo}_{c}$, there exists a constant M with

$$
c_{d}(\varphi) \leq M d .
$$

Asymptotic arguments

We need to show: $\varphi_{f} \notin$ FHomeo $_{c}$.
The argument will go like this:

- (A) For any $\varphi \in \mathrm{FHomeo}_{c}$, there exists a constant M with

$$
c_{d}(\varphi) \leq M d .
$$

- (B) For any infinite twist φ_{f},

$$
\lim _{d \longrightarrow \infty} \frac{c_{d}(\varphi)}{d}=+\infty
$$

(A) - Hofer continuity

To prove $(A)\left[c_{d}(\varphi) \leq M d\right.$ when $\varphi \in$ FHomeo $\left._{c}\right]$,

(A) - Hofer continuity

To prove $(A)\left[c_{d}(\varphi) \leq M d\right.$ when $\varphi \in$ FHomeo $\left._{c}\right]$,
we prove the following "Hofer continuity" property:

$$
\left|c_{d}\left(\varphi_{H}^{1}\right)-c_{d}\left(\varphi_{K}^{1}\right)\right| \leq d\|H-K\|_{1, \infty} .
$$

(A) - Hofer continuity

To prove $(A)\left[c_{d}(\varphi) \leq M d\right.$ when $\varphi \in$ FHomeo $\left._{c}\right]$,
we prove the following "Hofer continuity" property:

$$
\left|c_{d}\left(\varphi_{H}^{1}\right)-c_{d}\left(\varphi_{K}^{1}\right)\right| \leq d\|H-K\|_{1, \infty} .
$$

Then, (A) follows easily from C^{0} continuity and the fact that the $i d=\varphi_{K}^{1}$ for $K=0$.

(B) - part i: Monotonicity

To prove $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,

(B) - part i: Monotonicity

To prove $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we first prove a general "Monotonicity property"

$$
H \leq K \Longrightarrow c_{d}\left(\varphi_{H}^{1}\right) \leq c_{d}\left(\varphi_{K}^{1}\right),
$$

(B) - part i: Monotonicity

To prove $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we first prove a general "Monotonicity property"

$$
H \leq K \Longrightarrow c_{d}\left(\varphi_{H}^{1}\right) \leq c_{d}\left(\varphi_{K}^{1}\right),
$$

We then approximate φ_{f} with smooth $\varphi_{f_{i}}$ such that:

$$
f_{i} \leq f_{j}
$$

hence

$$
\frac{c_{d}\left(\varphi_{f}\right)}{d} \geq \frac{c_{d}\left(\varphi_{f_{i}}\right)}{d} .
$$

We pick f_{i} agreeing with f except on $[0,1 / i] ; \mathrm{Cal}\left(f_{i}\right) \longrightarrow \infty$

We pick f_{i} agreeing with f except on $[0,1 / i] ; \operatorname{Cal}\left(f_{i}\right) \longrightarrow \infty$

(B) - part ii: Hutchings' conjecture

To complete the proof of $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,

(B) - part ii: Hutchings' conjecture

To complete the proof of $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we prove Hutchings' conjecture, in the case of monotone twists,
i.e. we show

(B) - part ii: Hutchings' conjecture

To complete the proof of $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we prove Hutchings' conjecture, in the case of monotone twists,
i.e. we show :

$$
\lim _{d \longrightarrow \infty} \frac{c_{d}\left(\varphi_{f_{i}}\right)}{d}=\operatorname{Ca}\left(\left(\varphi_{f_{i}}\right)\right.
$$

(B) - part ii: Hutchings' conjecture

To complete the proof of $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we prove Hutchings' conjecture, in the case of monotone twists,
i.e. we show :

$$
\lim _{d \rightarrow \infty} \frac{c_{d}\left(\varphi_{f_{i}}\right)}{d}=\operatorname{Cal}\left(\varphi_{f_{i}}\right)
$$

Combined with the previous slides, this gives

(B) - part ii: Hutchings' conjecture

To complete the proof of $(B)\left[c_{d}\left(\varphi_{f}\right) / d \longrightarrow \infty\right]$,
we prove Hutchings' conjecture, in the case of monotone twists,
i.e. we show :

$$
\lim _{d \rightarrow \infty} \frac{c_{d}\left(\varphi_{f_{i}}\right)}{d}=\operatorname{Cal}\left(\varphi_{f_{i}}\right)
$$

Combined with the previous slides, this gives

$$
\lim _{d \longrightarrow \infty} \frac{c_{d}\left(\varphi_{f}\right)}{d} \geq \lim _{d \longrightarrow \infty} \frac{c_{d}\left(\varphi_{f_{i}}\right)}{d}=\operatorname{Cal}\left(\varphi_{f_{i}}\right) \longrightarrow \infty
$$

We prove Hutchings' conjecture by direct computation in the monotone twist case.

Recap: to-do list

To recap, to prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple, we have to:

Recap: to-do list

To recap, to prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple, we have to:

- Define PFH spectral invariants

Recap: to-do list

To recap, to prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple, we have to:

- Define PFH spectral invariants
- Establish C^{0} continuity, Hofer continuity, monotonicity for these invariants

Recap: to-do list

To recap, to prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple, we have to:

- Define PFH spectral invariants
- Establish C^{0} continuity, Hofer continuity, monotonicity for these invariants
- Prove Hutchings' conjecture for monotone twists

Recap: to-do list

To recap, to prove $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple, we have to:

- Define PFH spectral invariants
- Establish C^{0} continuity, Hofer continuity, monotonicity for these invariants
- Prove Hutchings' conjecture for monotone twists
- Put it all together, as explained above.

Section 4

PFH spectral invariants — impressionistic sketch

We define PFH spectral invariants by embedding D^{2} as the northern hemisphere of S^{2}, and then using the periodic Floer homology of S^{2}.

The PFH of S^{2} : the setup

Let $\varphi \in \operatorname{Diffeo}_{0}\left(S^{2}, \omega\right)$.

The PFH of S^{2} : the setup

Let $\varphi \in$ Diffeo $_{0}\left(S^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=S_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

The PFH of S^{2} : the setup

Let $\varphi \in$ Diffeo $_{0}\left(S^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=S_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

Has a canonical vector field

$$
R:=\partial_{t},
$$

The PFH of S^{2} : the setup

Let $\varphi \in \operatorname{Diffeo}_{0}\left(S^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=S_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

Has a canonical vector field

$$
R:=\partial_{t},
$$

and a canonical two-form ω_{φ} induced by ω.

The PFH of S^{2}

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

The PFH of S^{2}

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

The PFH of S^{2}

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by sets $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed periodic orbits of R
- m_{i} positive integer; $m_{i}=1$ if α_{i} is hyperbolic

The PFH of S^{2}

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by sets $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed periodic orbits of R
- m_{i} positive integer; $m_{i}=1$ if α_{i} is hyperbolic
- Differential ∂ counts $I=1 J$-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$, for generic J, where I is the "ECH index"

The PFH of S^{2}

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by sets $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed periodic orbits of R
- m_{i} positive integer; $m_{i}=1$ if α_{i} is hyperbolic
- Differential ∂ counts $I=1$ J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$, for generic J, where l is the "ECH index"
- ECH index beyond scope of talk; basic idea: $I=1$ forces curves to be mostly embedded,

The PFH differential:

> Introduction
> Idea of the proof Outline of the argument
> PFH spectral invariants - impressionistic sketch Remarks on the rest of the proof

More about PFH

$\operatorname{PFH}(\varphi)$ homology of $\operatorname{PFC}(\varphi, \partial)$.

More about PFH

$\operatorname{PFH}(\varphi)$ homology of $\operatorname{PFC}(\varphi, \partial)$.
There's a splitting

$$
\operatorname{PFH}(\varphi)=\oplus_{d} P F H(\varphi, d),
$$

where $\operatorname{PFH}(\varphi, d)$ homology of subcomplex generated by degree d orbit sets.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\overparen{P F C}(\varphi)$.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\operatorname{PFC}(\varphi)$. Details of $\operatorname{PFC}(\varphi)$:

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\operatorname{PFC}(\varphi)$.
Details of $\operatorname{PFC}(\varphi)$:

- Choose a degree 1 (trivialized) cycle γ.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{\operatorname{PFC}(}(\varphi)$.
Details of $\operatorname{PFC}(\varphi)$:

- Choose a degree 1 (trivialized) cycle γ.
- Generator of $\widetilde{\operatorname{PFC}}(\varphi, d)$ a pair $(\alpha, Z), Z \in H_{2}\left(\alpha, \gamma^{d}\right)$

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\overparen{P F C}(\varphi)$.
Details of $\operatorname{PFC}(\varphi)$:

- Choose a degree 1 (trivialized) cycle γ.
- Generator of $\widetilde{\operatorname{PFC}}(\varphi, d)$ a pair $(\alpha, Z), Z \in H_{2}\left(\alpha, \gamma^{d}\right)$
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\overparen{P F C}(\varphi)$.
Details of $\operatorname{PFC}(\varphi)$:

- Choose a degree 1 (trivialized) cycle γ.
- Generator of $\widetilde{\operatorname{PFC}}(\varphi, d)$ a pair $(\alpha, Z), Z \in H_{2}\left(\alpha, \gamma^{d}\right)$
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:
- this means: C a curve from α to β, with $Z=[C]+\left[Z^{\prime}\right]$.

Two auxiliary structures on $\widetilde{P F H}$:

$$
\begin{array}{r}
\text { Introduction } \\
\text { Idea of the proof } \\
\text { Outline of the argument } \\
\text { PFH spectral invariants - impressionistic sketch } \\
\text { Remarks on the rest of the proof }
\end{array}
$$

The spectral invariants:

Two auxiliary structures on PFH:

- "The action": $\mathcal{A}(\alpha, Z)=\int_{Z} \omega_{\varphi}$

The spectral invariants:

Two auxiliary structures on PFH:

- "The action": $\mathcal{A}(\alpha, Z)=\int_{Z} \omega_{\varphi}$
- "The grading": $\operatorname{gr}(\alpha, Z)=I(Z)$

The spectral invariants:

Two auxiliary structures on $\widetilde{P F H}$:

- "The action": $\mathcal{A}(\alpha, Z)=\int_{Z} \omega_{\varphi}$
- "The grading": $\operatorname{gr}(\alpha, Z)=I(Z)$

We now define $c_{d}(\varphi)$ to be the minimum action of a homology class with grading 0 and degree d.

The spectral invariants:

Two auxiliary structures on $\widetilde{\text { PFH: }}$

- "The action": $\mathcal{A}(\alpha, Z)=\int_{Z} \omega_{\varphi}$
- "The grading": $\operatorname{gr}(\alpha, Z)=I(Z)$

We now define $c_{d}(\varphi)$ to be the minimum action of a homology class with grading 0 and degree d. We choose γ to be closed orbit over the south pole (recall that our φ are the identity on southern hemisphere).

Section 5

Remarks on the rest of the proof

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^{0} continuity inspired by proof of C^{0} continuity of barcodes for Ham. Floer homology

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^{0} continuity inspired by proof of C^{0} continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation:

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^{0} continuity inspired by proof of C^{0} continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation: can write down all closed orbits, curves

Still remains to explain Hofer continuity, monotonicity, C^{0}-continuity, Hutchings' conjecture in twist case...key ideas:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^{0} continuity inspired by proof of C^{0} continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation: can write down all closed orbits, curves
- - get a combinatorial model, involving lattice paths, lattice regions, inspired by work of Hutchings-Sullivan

