The simplicity conjecture

Dan Cristofaro-Gardiner

IAS

Zoom April 3, 2020

Introduction

- Introduction
- 2 Idea of the proof

- Introduction
- 2 Idea of the proof
- 3 Outline of the argument

- Introduction
- 2 Idea of the proof
- Outline of the argument
- PFH spectral invariants impressionistic sketch

- Introduction
- 2 Idea of the proof
- Outline of the argument
- PFH spectral invariants impressionistic sketch
- Remarks on the rest of the proof

Section 1

Introduction

An old theorem of Fathi

 $Homeo_c(D^n, \omega)$: group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

PFH spectral invariants — impressionistic sketch Remarks on the rest of the proof

An old theorem of Fathi

 $Homeo_c(D^n, \omega)$: group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, '80)

Homeo_c (D^n, ω) is simple when $n \geq 3$.

(Definition of simple: no non-trivial proper normal subgroups.)

An old theorem of Fathi

 $Homeo_c(D^n, \omega)$: group of volume-preserving homeomorphisms of the n-disc, identity near the boundary.

Theorem (Fathi, '80)

 $Homeo_c(D^n, \omega)$ is simple when $n \geq 3$.

(Definition of simple: no non-trivial proper normal subgroups.)

Question (Fathi, 1980)

Is the group $Homeo_c(D^2, \omega)$ simple?

PFH spectral invariants — impressionistic sketch Remarks on the rest of the proof

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

Homeo_c (D^2, ω) is not simple.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

Homeo_c(D^2, ω) is not simple.

Define $Homeo_0(S^2, \omega)$: area-preserving homeos. of S^2 , in component of the identity.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

Homeo_c(D^2, ω) is not simple.

Define $Homeo_0(S^2, \omega)$: area-preserving homeos. of S^2 , in component of the identity.

Corollary

Homeo₀(S^2, ω) is not simple.

Today's theorem

Theorem ("Simplicity conjecture"; CG., Humiliere, Seyfadinni)

Homeo_c(D^2, ω) is not simple.

Define $Homeo_0(S^2, \omega)$: area-preserving homeos. of S^2 , in component of the identity.

Corollary

Homeo₀(S^2, ω) is not simple.

 S^2 the only closed manifold for which simplicity of $Homeo_0(M, \omega)$ not known.

History; comparisons

• Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $Diff_0^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $Diff_0^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \ge 3$. (Thurston)

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $Diff_0^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \ge 3$. (Thurston)
- Symplectic case: kernel of flux simple when manifold closed; if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)

- Ulam ("Scottish book", 1930s): Is $Homeo_0(S^n)$ simple?
- 30s-60s: Homeo₀(M) simple for any connected manifold (Ulam, von Neumann, Anderson, Fisher, Chernovski, Edwards-Kirby)
- 70s: $Diff_0^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston)
- Volume preserving diffeos: there is a "flux" homomorphism, kernel is simple for $n \ge 3$. (Thurston)
- Symplectic case: kernel of flux simple when manifold closed; if not closed, there's a Calabi homomorphism, kernel of Calabi simple (Banyaga)
- Volume preserving homeomorphisms: there is a "mass flow" homomorphism; kernel is simple for $n \ge 3$ (Fathi). n = 2 case mysterious before our work.

Our case — comparison

In comparison, our case seems more wild!

Our case — comparison

In comparison, our case seems more wild!

Not simple,

Our case — comparison

In comparison, our case seems more wild!

- Not simple,
- but (as far as we know) no obvious natural homomorphism out of $Homeo_c(D^2,\omega)$ either

Remark on some historical motivation

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.

eg:

• $Homeo_0(M)$ simple iff M connected

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.

eg:

- $Homeo_0(M)$ simple iff M connected
- (Whittaker, '63): any iso. $Homeo_0(M) \longrightarrow Homeo_0(N)$ induced by a homeomorphism $M \longrightarrow N$.

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes information about the underlying space.

eg:

- Homeo₀(M) simple iff M connected
- (Whittaker, '63): any iso. $Homeo_0(M) \longrightarrow Homeo_0(N)$ induced by a homeomorphism $M \longrightarrow N$.
- (Filipkiewicz, '82): an iso. $Diff_0^r(M) \longrightarrow Diff_0^s(N)$ implies r = s, M, N C^r -diffeomorphic (requires M, N compact)

Why doesn't Fathi's proof work in dim 2?

Le Roux:

Why doesn't Fathi's proof work in dim 2?

Le Roux:

• Fathi's proof uses a "fragmentation" result: for any $\varphi \in Home_c(D^n, \omega), n \geq 3$, have $\varphi = fg, f$ and g supported on discs of 3/4 volume. Fails in dimension 2.

Why doesn't Fathi's proof work in dim 2?

Le Roux:

- Fathi's proof uses a "fragmentation" result: for any $\varphi \in Home_c(D^n, \omega), n \geq 3$, have $\varphi = fg, f$ and g supported on discs of 3/4 volume. Fails in dimension 2.
- Le Roux shows: simplicity in n = 2 case equivalent to another fragmentation property.

Why doesn't Fathi's proof work in dim 2?

Le Roux:

- Fathi's proof uses a "fragmentation" result: for any $\varphi \in Home_c(D^n, \omega), n \geq 3$, have $\varphi = fg, f$ and g supported on discs of 3/4 volume. Fails in dimension 2.
- Le Roux shows: simplicity in n = 2 case equivalent to another fragmentation property.

Our work shows this fragmentation property does not hold.

Section 2

Idea of the proof

The Calabi invariant

 $Diffeo_c(D^2, \omega)$ is **not simple**.

The Calabi invariant

 $Diffeo_c(D^2, \omega)$ is **not simple**.

There is a non-trivial homomorphism Calabi.

The Calabi invariant

 $Diffeo_c(D^2, \omega)$ is **not simple**.

There is a non-trivial homomorphism Calabi.

Cal: Diffeo_c
$$(D^2, \omega) \longrightarrow \mathbb{R}$$
,

defined as follows:

Diffeo_c(D^2, ω) is **not simple**.

There is a non-trivial homomorphism Calabi.

Cal: Diffeo_c
$$(D^2, \omega) \longrightarrow \mathbb{R}$$
,

defined as follows:

• Given $\varphi \in Diffeo_c(D^2, \omega)$, write $\varphi = \varphi_H^1$,

Diffeo_c(D^2, ω) is **not simple**.

There is a non-trivial homomorphism Calabi.

Cal: Diffeo_c
$$(D^2, \omega) \longrightarrow \mathbb{R}$$
,

defined as follows:

• Given $\varphi \in Diffeo_c(D^2, \omega)$, write $\varphi = \varphi_H^1$, H = 0 near ∂D^2 .

 $Diffeo_c(D^2, \omega)$ is **not simple**.

There is a non-trivial homomorphism Calabi.

Cal: Diffeo_c
$$(D^2, \omega) \longrightarrow \mathbb{R}$$
,

defined as follows:

- Given $\varphi \in Diffeo_c(D^2, \omega)$, write $\varphi = \varphi_H^1$, H = 0 near ∂D^2 .
- Define $Cal(\varphi) := \int_{D^2} \int_{S^1} H dt \omega$.

Diffeo_c(D^2, ω) is **not simple**.

There is a non-trivial homomorphism Calabi.

Cal: Diffeo_c
$$(D^2, \omega) \longrightarrow \mathbb{R}$$
,

defined as follows:

- Given $\varphi \in Diffeo_c(D^2, \omega)$, write $\varphi = \varphi_H^1$, H = 0 near ∂D^2 .
- Define $Cal(\varphi) := \int_{D^2} \int_{S^1} H dt \omega$.
- Fact: $Cal(\varphi)$ doesn't depend on choice of H!

Naive idea

There's an inclusion

$$Diffeo_c(D^2, \omega) \subset Homeo_c(D^2, \omega),$$

dense in C^0 topology.

Naive idea

There's an inclusion

$$Diffeo_c(D^2, \omega) \subset Homeo_c(D^2, \omega),$$

dense in C^0 topology. Can we extend Calabi?

Naive idea

There's an inclusion

$$Diffeo_c(D^2, \omega) \subset Homeo_c(D^2, \omega),$$

dense in C^0 topology. Can we extend Calabi?

Problem: Cal not C^0 continuous.

Naive idea

There's an inclusion

$$Diffeo_c(D^2, \omega) \subset Homeo_c(D^2, \omega),$$

dense in C^0 topology. Can we extend Calabi?

Problem: Cal not C^0 continuous.

eg: Consider H_n , supported on disc around origin of area 1/n, where $H_n \approx n$.

Naive idea

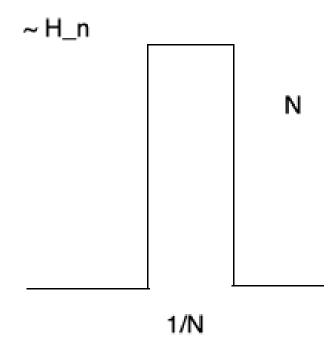
There's an inclusion

$$Diffeo_c(D^2, \omega) \subset Homeo_c(D^2, \omega),$$

dense in C^0 topology. Can we extend Calabi?

Problem: Cal not C^0 continuous.

eg: Consider H_n , supported on disc around origin of area 1/n, where $H_n \approx n$. $Cal(\varphi_{H_n}^1) \approx 1$, C^0 converges to the identity.



Battle plan

Idea to get around this:

Battle plan

Idea to get around this:

• For $\varphi \in Diffeo_c$, use "PFH spectral invariants" $c_d(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".

Battle plan

Idea to get around this:

- For $\varphi \in Diffeo_c$, use "PFH spectral invariants" $c_d(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_d(\varphi)$ are C^0 continuous, so extend to $Homeo_c$

Battle plan

Idea to get around this:

- For $\varphi \in Diffeo_c$, use "PFH spectral invariants" $c_d(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_d(\varphi)$ are C^0 continuous, so extend to $Homeo_c$
- Prove "enough" of Hutchings' conjecture:

Battle plan

Idea to get around this:

- For $\varphi \in Diffeo_c$, use "PFH spectral invariants" $c_d(\varphi) \in \mathbb{R}$ defined via "Periodic Floer Homology".
- Show $c_d(\varphi)$ are C^0 continuous, so extend to $Homeo_c$
- Prove "enough" of Hutchings' conjecture:

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi)}{d}=\operatorname{Cal}(\varphi)$$

on *Diffeo_c*. (Inspired by "Volume Conjecture" for ECH.)

Section 3

Outline of the argument

Finite Hofer energy homeomorphisms

To prove $Homeo_c(D^2, \omega)$ not simple, need a normal subgroup.

Finite Hofer energy homeomorphisms

To prove $Homeo_c(D^2, \omega)$ not simple, need a normal subgroup.

Say $\varphi \in FHomeo_c(D^2, \omega)$ — "finite Hofer energy homeomorphisms" — if there exists

$$\varphi_{H_i}^1 \longrightarrow_{C^0} \varphi, \quad ||H_i||_{1,\infty} \leq M,$$

for *M* independent of *i*.

Finite Hofer energy homeomorphisms

To prove $Homeo_c(D^2, \omega)$ not simple, need a normal subgroup.

Say $\varphi \in FHomeo_c(D^2, \omega)$ — "finite Hofer energy homeomorphisms" — if there exists

$$\varphi_{H_i}^1 \longrightarrow_{C^0} \varphi, \quad ||H_i||_{1,\infty} \leq M,$$

for M independent of i. Here, $||H_i||_{1,\infty}$ is the **Hofer norm**

$$||H_i||_{1,\infty}=\int_0^1 max(H_i)-min(H_i)dt.$$

The infinite twist

We show: $FHomeo_c \subseteq Homeo_c$.

The infinite twist

We show: $FHomeo_c \subseteq Homeo_c$.

Hard part: why proper?

The infinite twist

We show: $FHomeo_c \subseteq Homeo_c$.

Hard part: why proper?

Define a **monotone twist** φ_f to be

$$(r,\theta) \longrightarrow (r,\theta+2\pi f(r)),$$

where f(r) non-increasing.

The infinite twist

We show: $FHomeo_c \subseteq Homeo_c$.

Hard part: why proper?

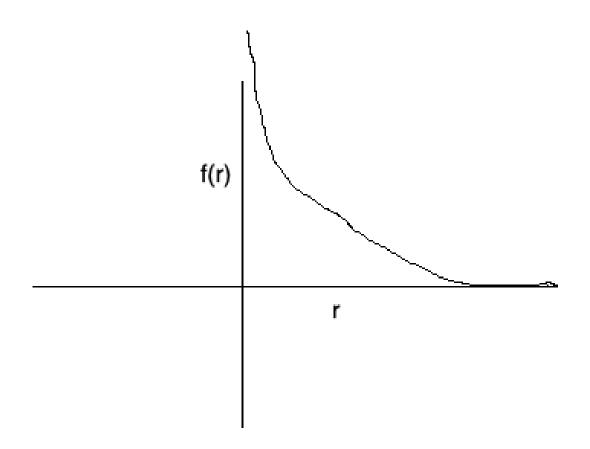
Define a **monotone twist** φ_f to be

$$(r,\theta) \longrightarrow (r,\theta+2\pi f(r)),$$

where f(r) non-increasing.

Call φ_f an **infinite twist** if

$$\int_0^1 \int_r^1 sf(s)ds \ r \ dr = \infty.$$



Motivation

The idea of the condition

$$\int_0^1 \int_r^1 sf(s)ds \ r \ dr = \infty,$$

Motivation

The idea of the condition

$$\int_0^1 \int_r^1 sf(s)ds \ r \ dr = \infty,$$

is that for monotone twists $\varphi \in Diffeo_c$,

$$Cal(\varphi_f) = \int_0^1 \int_r^1 sf(s)ds \ r \ dr.$$

Motivation

The idea of the condition

$$\int_0^1 \int_r^1 sf(s)ds \ r \ dr = \infty,$$

is that for monotone twists $\varphi \in Diffeo_c$,

$$Cal(\varphi_f) = \int_0^1 \int_r^1 sf(s)ds \ r \ dr.$$

So, morally, infinite twists "should" have infinite Calabi invariant.

Asymptotic arguments

We need to show: $\varphi_f \notin FHomeo_c$.

Asymptotic arguments

We need to show: $\varphi_f \notin FHomeo_c$.

The argument will go like this:

Asymptotic arguments

We need to show: $\varphi_f \notin FHomeo_c$.

The argument will go like this:

• (A) For any $\varphi \in FHomeo_c$, there exists a constant M with

$$c_d(\varphi) \leq Md$$
.

Asymptotic arguments

We need to show: $\varphi_f \notin FHomeo_c$.

The argument will go like this:

• (A) For any $\varphi \in FHomeo_c$, there exists a constant M with

$$c_d(\varphi) \leq Md$$
.

• (B) For any infinite twist φ_f ,

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi)}{d}=+\infty.$$

(A) — Hofer continuity

To prove (A) $[c_d(\varphi) \leq Md \text{ when } \varphi \in FHomeo_c]$,

(A) — Hofer continuity

To prove (A) $[c_d(\varphi) \leq Md \text{ when } \varphi \in FHomeo_c]$,

we prove the following "Hofer continuity" property:

$$|c_d(\varphi_H^1) - c_d(\varphi_K^1)| \le d||H - K||_{1,\infty}.$$

(A) — Hofer continuity

To prove (A) $[c_d(\varphi) \leq Md \text{ when } \varphi \in FHomeo_c]$,

we prove the following "Hofer continuity" property:

$$|c_d(\varphi_H^1) - c_d(\varphi_K^1)| \le d||H - K||_{1,\infty}.$$

Then, (A) follows easily from C^0 continuity and the fact that the $id = \varphi_K^1$ for K = 0.

(B) — part i: Monotonicity

To prove (B) [$c_d(\varphi_f)/d \longrightarrow \infty$],

(B) — part i: Monotonicity

To prove (B) [
$$c_d(\varphi_f)/d \longrightarrow \infty$$
],

we first prove a general "Monotonicity property"

$$H \leq K \implies c_d(\varphi_H^1) \leq c_d(\varphi_K^1),$$

(B) — part i: Monotonicity

To prove (B) [$c_d(\varphi_f)/d \longrightarrow \infty$],

we first prove a general "Monotonicity property"

$$H \leq K \implies c_d(\varphi_H^1) \leq c_d(\varphi_K^1),$$

We then approximate φ_f with smooth φ_{f_i} such that:

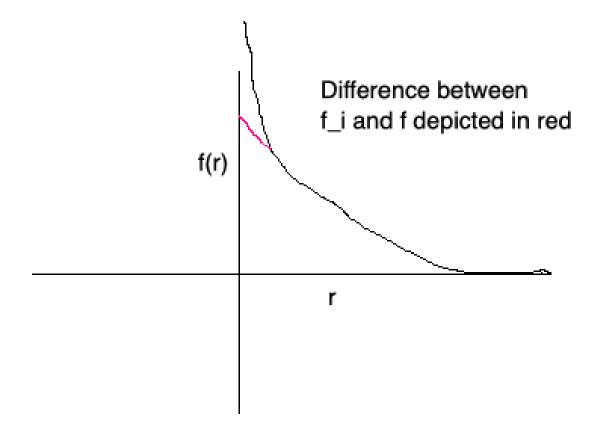
$$f_i \leq f_j$$

hence

$$\frac{c_d(\varphi_f)}{d} \geq \frac{c_d(\varphi_{f_i})}{d}.$$

We pick f_i agreeing with f except on [0, 1/i]; $Cal(f_i) \longrightarrow \infty$

We pick f_i agreeing with f except on [0, 1/i]; $Cal(f_i) \longrightarrow \infty$



(B) — part ii: Hutchings' conjecture

To complete the proof of (B) $[c_d(\varphi_f)/d \longrightarrow \infty]$,

(B) — part ii: Hutchings' conjecture

To complete the proof of (B) $[c_d(\varphi_f)/d \longrightarrow \infty]$,

we prove Hutchings' conjecture, in the case of monotone twists, i.e. we show

(B) — part ii: Hutchings' conjecture

To complete the proof of (B) $[c_d(\varphi_f)/d \longrightarrow \infty]$,

we prove Hutchings' conjecture, in the case of monotone twists, i.e. we show :

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi_{f_i})}{d}=Cal(\varphi_{f_i}).$$

(B) — part ii: Hutchings' conjecture

To complete the proof of (B) $[c_d(\varphi_f)/d \longrightarrow \infty]$,

we prove Hutchings' conjecture, in the case of monotone twists, i.e. we show :

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi_{f_i})}{d}=Cal(\varphi_{f_i}).$$

Combined with the previous slides, this gives

(B) — part ii: Hutchings' conjecture

To complete the proof of (B) $[c_d(\varphi_f)/d \longrightarrow \infty]$,

we prove Hutchings' conjecture, in the case of monotone twists, i.e. we show :

$$\lim_{d\longrightarrow\infty}\frac{c_d(\varphi_{f_i})}{d}=Cal(\varphi_{f_i}).$$

Combined with the previous slides, this gives

$$lim_{d\longrightarrow\infty}\frac{c_d(\varphi_f)}{d}\geq lim_{d\longrightarrow\infty}\frac{c_d(\varphi_{f_i})}{d}=Cal(\varphi_{f_i})\longrightarrow\infty.$$

We prove Hutchings' conjecture by direct computation in the monotone twist case.

Recap: to-do list

Recap: to-do list

To recap, to prove $Homeo_c(D^2, \omega)$ is not simple, we have to:

Define PFH spectral invariants

Recap: to-do list

- Define PFH spectral invariants
- Establish C^0 continuity, Hofer continuity, monotonicity for these invariants

Recap: to-do list

- Define PFH spectral invariants
- Establish C^0 continuity, Hofer continuity, monotonicity for these invariants
- Prove Hutchings' conjecture for monotone twists

Recap: to-do list

- Define PFH spectral invariants
- Establish C^0 continuity, Hofer continuity, monotonicity for these invariants
- Prove Hutchings' conjecture for monotone twists
- Put it all together, as explained above.

Section 4

PFH spectral invariants — impressionistic sketch

We define PFH spectral invariants by embedding D^2 as the northern hemisphere of S^2 , and then using the periodic Floer homology of S^2 .

The PFH of S^2 : the setup

Let $\varphi \in Diffeo_0(S^2, \omega)$.

The PFH of S^2 : the setup

Let $\varphi \in Diffeo_0(S^2, \omega)$. Recall the **mapping torus**

$$Y_{\varphi} = S_{\mathsf{x}}^2 \times [0,1]_t / \sim, \quad (\mathsf{x},1) \sim (\varphi(\mathsf{x}),0).$$

The PFH of S^2 : the setup

Let $\varphi \in Diffeo_0(S^2, \omega)$. Recall the **mapping torus**

$$Y_{\varphi} = S_{\mathsf{x}}^2 \times [0,1]_t / \sim, \quad (\mathsf{x},1) \sim (\varphi(\mathsf{x}),0).$$

Has a canonical vector field

$$R := \partial_t$$
,

The PFH of S^2 : the setup

Let $\varphi \in Diffeo_0(S^2, \omega)$. Recall the **mapping torus**

$$Y_{\varphi} = S_{\mathsf{x}}^2 \times [0,1]_t / \sim, \quad (\mathsf{x},1) \sim (\varphi(\mathsf{x}),0).$$

Has a canonical vector field

$$R := \partial_t$$

and a canonical two-form ω_{φ} induced by ω .

The PFH of S^2

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

The PFH of S^2

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

The PFH of S^2

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

- Generated by sets $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed periodic orbits of R
 - m_i positive integer; $m_i = 1$ if α_i is hyperbolic

The PFH of S^2

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

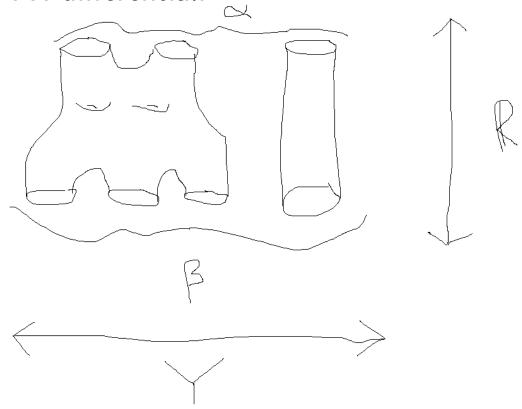
- Generated by sets $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed periodic orbits of R
 - m_i positive integer; $m_i = 1$ if α_i is hyperbolic
- Differential ∂ counts I=1 J-holomorphic curves in $\mathbb{R}\times Y_{\varphi}$, for generic J, where I is the "ECH index"

The PFH of S^2

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

- Generated by sets $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed periodic orbits of R
 - m_i positive integer; $m_i = 1$ if α_i is hyperbolic
- Differential ∂ counts I=1 J-holomorphic curves in $\mathbb{R}\times Y_{\varphi}$, for generic J, where I is the "ECH index"
- ECH index beyond scope of talk; basic idea: I=1 forces curves to be mostly embedded,

The PFH differential:



More about PFH

 $PFH(\varphi)$ homology of $PFC(\varphi, \partial)$.

More about PFH

 $PFH(\varphi)$ homology of $PFC(\varphi, \partial)$.

There's a splitting

$$PFH(\varphi) = \bigoplus_{d} PFH(\varphi, d),$$

where $PFH(\varphi, d)$ homology of subcomplex generated by degree d orbit sets.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$.

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$. Details of $\widetilde{PFC}(\varphi)$:

• Choose a degree 1 (trivialized) cycle γ .

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$.

- Choose a degree 1 (trivialized) cycle γ .
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair (α, Z) , $Z \in H_2(\alpha, \gamma^d)$

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$.

- Choose a degree 1 (trivialized) cycle γ .
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair (α, Z) , $Z \in H_2(\alpha, \gamma^d)$
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :

Twisted PFH

To get quantitative information, Hutchings' observed one can work with a "twisted" version of PFH; homology of a complex $\widetilde{PFC}(\varphi)$.

- Choose a degree 1 (trivialized) cycle γ .
- Generator of $\widetilde{PFC}(\varphi, d)$ a pair (α, Z) , $Z \in H_2(\alpha, \gamma^d)$
- ∂ counts I=1 curves C from (α, Z) to (β, Z') :
 - this means: C a curve from α to β , with Z = [C] + [Z'].

The spectral invariants:

Two auxiliary structures on \widetilde{PFH} :

The spectral invariants:

Two auxiliary structures on \widetilde{PFH} :

• "The action": $\mathcal{A}(\alpha, Z) = \int_Z \omega_{\varphi}$

The spectral invariants:

Two auxiliary structures on \widetilde{PFH} :

- "The action": $\mathcal{A}(\alpha, Z) = \int_Z \omega_{\varphi}$
- "The grading": $gr(\alpha, Z) = I(Z)$

The spectral invariants:

Two auxiliary structures on \widetilde{PFH} :

- "The action": $\mathcal{A}(\alpha, Z) = \int_Z \omega_{\varphi}$
- "The grading": $gr(\alpha, Z) = I(Z)$

We now define $c_d(\varphi)$ to be the minimum action of a homology class with grading 0 and degree d.

The spectral invariants:

Two auxiliary structures on \widetilde{PFH} :

- "The action": $\mathcal{A}(\alpha, Z) = \int_Z \omega_{\varphi}$
- "The grading": $gr(\alpha, Z) = I(Z)$

We now define $c_d(\varphi)$ to be the minimum action of a homology class with grading 0 and degree d. We choose γ to be closed orbit over the south pole (recall that our φ are the identity on southern hemisphere).

Section 5

Remarks on the rest of the proof

Still remains to explain Hofer continuity, monotonicity, C^0 -continuity, Hutchings' conjecture in twist case...key ideas:

 Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^0 continuity inspired by proof of C^0 continuity of barcodes for Ham. Floer homology

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^0 continuity inspired by proof of C^0 continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation:

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^0 continuity inspired by proof of C^0 continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation: can write down all closed orbits, curves

- Hofer continuity, monotonicity: cobordism map argument inspired by work of Hutchings-Taubes
- C^0 continuity inspired by proof of C^0 continuity of barcodes for Ham. Floer homology
- Hutchings' conjecture in twist case works by direct computation: can write down all closed orbits, curves
 - get a combinatorial model, involving lattice paths, lattice regions, inspired by work of Hutchings-Sullivan