1. Explain how to construct the following:

(a) An equilateral triangle on a line segment AB, given a straightedge and compass.
(b) The perpendicular to a line, through a given point off that line, given a straightedge and compass.
(c) A perspective view of the plane filled with quadrilaterals, given a straightedge and an initial quadrilateral.
(d) A line segment of length $\sqrt{2}/3$, given a line segment of length 1. Please explain why your line segment has the claimed length.

2. (a) How do I write $f(x) = \frac{2x+3}{x+1}$ as a composition of the generating transformations $x \to 1/x$, $x \to x + \ell$, and $x \to kx$?
(b) As a function on \mathbb{RP}^1, what is $f(0)$? What is $f(-1)$? What is $f(\infty)$?
(c) How do I write $z \to 4z$, viewed as a transformation of the upper-half plane, as a composition of reflections about hyperbolic lines?

3. (a) What is the vertical line $x = 3$, when written in terms of z and \bar{z}?
(b) What is the circle with center 5 and radius 2 when written in terms of z and \bar{z}?
(c) Find a Mobius transformation taking the line $x = 3$ to the circle with center 5 and radius 2.

4. (a) What is the hyperbolic distance between $2i$ and $7i$?
(b) Give an explicit formula for a sequence of points s_n in the hyperbolic plane such that the hyperbolic distance between s_n and s_{n-1} is n.

5. (a) Prove that the diagonals of a parallelogram bisect each other.
(b) Prove that the angle sum of any quadrilateral is 2π.
(c) Let A and B be two points on a circle. Prove that for all points C on one of the arcs connecting A and B, the angle ACB is constant.

6. (a) Show that any two points in the hyperbolic plane are connected by a unique hyperbolic line.
(b) Show using the definitions that any two lines in \(\mathbb{R}P^2 \) intersect at a unique point.

(c) Show using the definitions that there are four lines in \(\mathbb{R}P^2 \), no three of which have a common point. You should give an explicit description of these lines.

7. (a) What is the formula for the cross-ratio?

 (b) Show that the cross-ratio is preserved by the transformation \(x \to 1/x \).

 (c) Let \(L_1 \) be the line in the \(xy \)-plane defined by the equation \(y = 1 \), and let \(L_2 \) be the line in the \(xy \)-plane defined by the equation \(x = 1 \). If \((x_0, 1) \) is a point on \(L_1 \), what is its image on \(L_2 \) under projection from the origin?

8. (a) Give an explicit formula for (Euclidean) reflection about the line \(y = 2x \). (In other words, if the reflection is denoted by \(f \), for every \((x, y) \) tell me what \(f(x, y) \) is.)

 (b) Give an explicit formula for rotation about the point \((1, 0)\) by 45-degrees.

 (c) Write the transformation \(z \to z + 4 \) as a composition of reflections about hyperbolic lines.

9. (a) What is the hyperbolic distance between \(2 + i \) and \(2 + 2i \)?

 (b) What is the hyperbolic distance between \(i \) and \(i + 1 \)?

10. (a) Give the definition of the medians of a triangle.

 (b) Prove using vectors that the medians of a triangle always intersect, and give a formula for where they intersect.

Extra credit: Let \(\mathbb{Z}_3 \) be the field with 3-elements. In other words, \(\mathbb{Z}_3 \) has elements 0, 1, 2 and the way you add or multiply these elements is to add/multiply them as integers, and then take the remainder when you divide by 3. (So \(2 \cdot 2 = 1 \), for example, in \(\mathbb{Z}_3 \)). How many elements are there in the projective plane over \(\mathbb{Z}_3 \)?