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Committers in Free/Libre and Open Source Software (FLOSS) projects shoulder responsibility for evaluating
contributions and coordinating the broader community development effort. Given committers' central role in
development processes, we examinewhether how they are organized influences FLOSS community performance.
Specifically, drawing on the lens of Organizational Information Processing Theory (OIPT), we develop amodel that
explains how committal a structure's ability to manage information impacts FLOSS community performance.
Based on archival data drawn from 237 active FLOSS communities, we found that the performance of centralized
and decentralized FLOSS communities varied with three conditions tied to information flows: task routineness,
uncertainty and task interdependence. Our empirical results support the idea that FLOSS communities performing
development tasks that are generally routine, highly interdependent, and generate little contributor uncertainty
will perform better under a centralized committal structure. On the other hand, decentralized committal structures
thrive under the conditions of task non-routineness, low task interdependence, and high contributor uncertainty.
We conclude with a discussion of results, limitations, and directions for future research.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Free/Libre and Open Source Software (FLOSS) communities are self-
organizing, online groups of developers who create freely available soft-
ware products. Within FLOSS communities, while contributors write
source code patches that implement a feature or fix a bug, committers
review their submissions andapprove their integration into the commu-
nity source code base [81]. Committers are responsible for directing
individual members' development efforts as well as coordinate their
output's integration into a software package [74]. Often, committers
are promoted from the ranks of contributors who have demonstrated
superior levels of competence as well as dedication to a project. Even
though contributors and committers are not directly compensated,
FLOSS communities often create applications that are equivalent to,
or supplant, commercially available software. These products are
increasingly used by individuals and organizations to complete
essential tasks [31,86].

That a large, self-managed group of distributed volunteer developers
can develop such high quality software [4] defies the conventional
arzouq), vgrover@clemson.edu
wisdom of software engineering. Brooks' Law [12] suggests that as
the number of developers grows, ramp up effects make conventional
software projects more inefficient and ineffective due to delays tied to
communication and coordination costs. For example,when an additional
developer is added, Brooks argues that production is slowed, and errors
more likely, while that developer acquires knowledge about the
codebase. One might question, based on Brooks' Law, the viability of
large FLOSS projects where the size and number of participations
might hinder progress. However, large FLOSS projects like the Linux
Kernel are thriving in ways that suggest we still have more to learn
about the software development process [48].

To explain FLOSS communities' efficacy, open source developers
argue that unique software development practices, explain their ability
to coordinate activities as effectively as for-profit developers. Raymond
[81] argues that because the source code conveys rich information,
FLOSS developersmust communicate less to develop projects. Moreover,
Raymond argues that the FLOSSphilosophy of releasing software updates
early and often, provides opportunities for early correction of bugs and
more incremental changes in the software, thereby reducing developers'
need to directly communicate frequently. Raymond described FLOSS
communities as a bazaar for ideas, and FLOSS advocates contend that
these bazaars can compete with traditional software development
companies.

However, not all FLOSS communities are created equal.
Krishnamurthy [47] found that the majority of FLOSS communities
were highly centralized. Moreover, researchers have found substantial
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Table 1
Evidence of delays in FLOSS the development process.

Community Excerpt Notes

Subversion If you don't get a response for a Patch committals can experience
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variation in FLOSS communities' structure and efficacy [20,23,64].
Interestingly, FLOSS research offers empirical support that some
FLOSS communities match Raymond's description of a bazaar [44,85]
while others are more centrally controlled and observe similar traits
as traditional software teams described by Brooks [13]. The fact that
both views are represented in practice, suggests that much remains to
be learned about how to optimally structure FLOSS communities such
that they develop better software products.

To better understand FLOSS community's performance, this study
delineates contingency factors regarding developmental tasks
(routineness, uncertainty, inter-dependence) and hypothesizes
how they can influence the ability to successfully develop code. We
then examine how the structure of FLOSS communities changes
this relationship. Specifically, we examine how the emergent committal
structureswithin FLOSS communities relate to their ability to create and
update software. In order to frame our study, we leverage insights from
Organizational Information Processing Theory (OIPT) [33] to help
reconcile Brooks and Raymond's views on performance. The remainder
of this study unfolds as follows. First, we review FLOSS community
structure and identify different committal structures. Then, we introduce
OIPT as a potential explanation for variance in FLOSS community perfor-
mance. Drawing on OIPT, we develop a model that suggests FLOSS
community performance reflects the fit between the development task
and the development structure. Next, we discuss the methods used to
collect data and evaluate our research model. Finally, we discuss
the results, implications, and limitations of our study and offer directions
for future research.

2. Free/Libre and Open Source Software (Floss) Communities

FLOSS communities have been described as knowledge-sharing and
production communities [54]. To integratemembers' voluntary contribu-
tions into software, FLOSS communities rely on emergent leaders and
coordination processes [73]. Leaders self-select, or are picked by existing
leaders from the membership, based on their abilities and interests in
tasks that they perform [10,24,54,81,89]. Moreover, because most
FLOSS members participate for a short time [74,89], FLOSS communities'
coordinating structures tend to change over time [72].

Although dynamic, FLOSS community structure can be inferred from
patterns of member participation. In this study since we infer structural
attributes from the activity of members, it is useful to contextualize this
workwith a brief description of the nature of the community's structure
and membership. Crowston and Howison [23] describe FLOSS
community structure as onion shaped with four layers of members:
the core, the periphery, active users, and passive users (see Fig. 1).
Core members are formal members of the original development
team and often perform more frequent and consistent development
work than periphery members [23,88]. Active and passive users are
Focus of
Study

Fig. 1. FLOSS community structure (adapted from [23]).
merely consumers of the FLOSS community product; however, active
users do contribute feature requests and bug reports to the developer
community [104].

FLOSS communities are bound by howdevelopment and communica-
tion structures shape member's interaction. The development structure
organizes the activities of core and peripheral developers. The communi-
cation structure spans every layer of a FLOSS community to convey
information on the software [23,64]. Within the development structure
(core and peripheral), members play two roles: committer and
contributor. Both types ofmembers contribute to software development.
However, the committers also possess access rights to the community
code base. As a result, committers can incorporate changes directly
into the community code base, while contributors have to work with a
committer to do so. Committers rise from the ranks of the contributors
after they have proven their trustworthiness and technical competence
through their continued contributions [82,89].

Committers are the busiest FLOSS community members. Not only
are they themselves developers, they are also tasked with making
decisions about other contributors' work [89]. For example, if a contribu-
tion is accepted, the committer is tasked with integrating the contributed
patch into the code base, which places more responsibility and work on
the committer's shoulders, especially when the committed code breaks
the work of other developers.

Because of committers' responsibility for assessing and integrating
all contributions, they represent potential bottlenecks in the FLOSS
development process (cf. [37]). To illustrate that this is a problem that
many FLOSS communities face, we present excerpts from the guidelines
of some well known FLOSS projects in Table 1. These community
guidelines (in Subversion,Mozilla, or Apache), suggest that committers'
capacity to manage contributions drives the FLOSS development
process and by understanding how committers are structured to
manage their workload, we may glean insight into FLOSS communities'
performance [37].

Committal structure refers to how workload is distributed among
the committers. It is a result of a conscious community decision related
towho is given authority to commit code changes rather than a result of
deciding to use FLOSS development tools [61], and is assumed to reflect
the centralization tendencies in the community [36]. FLOSS communi-
ties are centralized when committers are a small group relative to the
development structure'smembership. In an extreme case, a community
with only one authorized committer would be highly centralized. The
committal structure is decentralizedwhen committers represent a larger
while, and don't see the patch
applied, it may just mean that
people are really busy.

delays.

Mozilla Getting attention: If a reviewer
doesn't respond within a week or
so of the review request:
• Join #developers …

Because delays in the review
process are all too common, the
Mozilla community has a process
for how to deal with the problem.

Apache What if my patch gets ignored?
Because Apache has only a small
number of volunteer developers,
and these developers are often
very busy, it is possible that your
patch will not receive any
immediate feedback. Developers
must prioritize their time, dealing
first with serious bugs and with
parts of the code in which they
have interest and knowledge.
Here are some suggestions on
what you can do to encourage
action on your patch:…

Delays in patch committal are all
too common and the community
explains the reasons and gives
suggestions on how to alleviate
the problem.
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portion of the developers. Thus, the opposite extreme case would be a
community where every user could commit a patch to the code base
would be considered decentralized.

Although Raymond [81] describes FLOSS communities as
decentralized babbling bazaars, FLOSS communities display central-
ized (e.g. [23,47]) and decentralized structures [23,64]. However, the
implications of these structures for FLOSS community performance
are not fully understood. While descriptive work exists, relatively
little theory driven work has examined FLOSS committal structure
and productivity [88]. To understand committal structure's implications
for FLOSS performance, we draw on Organizational Information
Processing Theory (OIPT) (e.g. [33,97,98]). OIPT has the potential to
yield insight into the circumstances under which different committal
structures will lead to FLOSS community performance. OIPT is particu-
larly relevant to understanding committal structures' implications
because it directs attention to organizational structures and information
flows as predictors of organizational performance.

3. Floss and Organizational Information Processing Theory

Organizational Information Processing Theory (OIPT) [33] suggests
that fit between information-processing capabilities and information-
processing demands shapes FLOSS communities' performance. It is
particularly relevant to FLOSS communities because it offers an explana-
tion for how committal structures influence the knowledge acquisition
and exchange necessary to effectively coordinate [30,54] changes in a
projects' code base [21]. Therefore the structure influences the speed
of software development. OIPT logic suggests that a FLOSS community's
decision to be centralized or decentralized will be paramount to perfor-
mance. Furthermore, OIPT suggests that there are other contingency
factors that are unique to each FLOSS community, which should be
considered when choosing the optimal structure for the community.

FLOSS communities' effectiveness rests on their ability to facilitate
internal information transfers [33]. For example, when contributors
lack knowledge required to make a contribution, such as identifying
which files need to be changed in order to implement a feature or
resolve a bug, they will seek out that knowledge. The committers,
having experience with the source code and the community in general,
will be the members most likely to possess this knowledge or could at
least identify individuals who do. Therefore, from an OIPT perspective,
FLOSS community effectiveness hinges on contributors and committers
ability to transfer information necessary to resolve the myriad of issues
tied to software development.

To structure internal information transfers, OIPT implies that FLOSS
communities will develop hierarchies. Although the relationship be-
tween committers and contributors is not one between a superior and
a subordinate in a conventional software organization (e.g., manager
and employee), completing a development task in FLOSS communities
requires them to interact in a hierarchicalmanner. Before a contribution
is committed into the community code base, committers are required to
review and, possibly, modify patches before they are committed. As one
committer puts it: “I've written before on mailing lists that only about
two out of every five submitted patches I review go in unchanged on a
good day and that seems to match other maintainers' experiences,
too,4” indicating that a hierarchy guides the development of FLOSS
communities.

According toOIPT, FLOSS communities sufferwhen their hierarchies'
structure no longer “fit” the information processing needs of their
members. For example, when the number of requests exceeds the
committers' capacity for handling them, contributions are not processed
as quickly, committers are overloaded, and the overall performance of
the community suffers. This uncertainty is inherent in an organization
populated by volunteers working at their own pace. It reflects a lack of
4 From the blog of a committer in the Django web framework FLOSS project: http://
www.pointy-stick.com/blog/2007/11/02/development-experiences-version-control/.
fit between the FLOSS community's information processing needs and
its information-processing capacity [33,97].

It is likely that such lack of fit could occur in FLOSS communities,
since committers are mostly volunteers and will very likely have less
time to dedicate to community coordination than would a full-time
supervisor in a more conventional organization [29]. Furthermore,
whatever time committers can afford to give to the community
will not be entirely dedicated to resolving contributor issues, as the
committers will also be engaged in both their own development tasks
and interactions with the broader community [18,24,64,89].

To ensure fit, OIPT suggests that FLOSS communities, like organiza-
tions, can choose from two different fit strategies to optimize informa-
tion flows and improve development performance. First, a FLOSS
community could increase the information-processing capacity of the
committal structure, by adding more committers, thereby giving them
more time to process contributions as well as free up time for their
own development activities and improving the overall development
performance of the community. Second, the community could take
action to reduce their information processing needs by limiting the
number of committers to experts who can ensure compatibility across
patches. To be effective, OIPT suggests that fit strategies must mitigate
uncertainty tied to information transfer in FLOSS communities [33].

4. Research model

Leveraging insight fromOIPT, we turn to developing amodel of FLOSS
community information processing needs, structure, and performance.
Our thesis is simple. We argue that contingency factors determine the
information processing needs of the FLOSS community that shape perfor-
mance. These contingency factors5 are: task routineness, defined as the
unpredictability of the task, contributor uncertainty, defined as the
number of contributions from peripheral developers, and task interde-
pendence, defined as the extent to which tasks require coordination to
be accomplished. Moreover, we investigate whether the centralization
of the development structure moderates ties from these sources of infor-
mation processing needs to performance. Below, we first describe the
outcome construct (performance) followed by the antecedent constructs
and the OIPT based logic behind our hypotheses in more detail. The
constructs are described in Table 2 and the research model is illustrated
in Fig. 2.

4.1. Performance of FLOSS communities

Inherently, FLOSS communities can be viewed as information
processing communities whose goal is successful software develop-
ment. When considering software development projects and perfor-
mance, it is important to distinguish between effort and progress [12].
Even when software developers expend substantial effort on a project,
it may not achieve sufficient quality to be released tomarket. For exam-
ple, in later stages of a project, Brooks [12] argues that the effort needed
to bring new developers up to speed (i.e., the ramp-up effect) and coor-
dinate development slows the rate at which more productive devel-
opers can add new functionality to an application, thereby introducing
inefficiencies and slowing its progress toward market. Hence, from
Brooks' view, progress (i.e., meeting deadlines to create or meeting
requirements) is an essential metric of a software development
project's performance [21,27,28,35,70].

In some respects, the dynamics that influence FLOSS community
performance are similar to traditional software development teams.
Not unlike ramp-up effects described by Brooks [12], FLOSS community
committers incur learning costs when they assist new contributors, by
answering their technical questions and giving them guidance [101].
Also, not unlike lead developers in traditional development teams
5 These are classic contingency factors extensively used in an IP context. They represent
a task's information needs based on the work of Perrow, and Thompson, among others.
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Table 2
Overview of theoretical constructs.

Construct Definition

Performance Progress made toward meeting the demands of the FLOSS
community.

Centralization The degree to which the committal activity in a FLOSS
community is concentrated in the hands of a small group of
committers relative to the overall size of the development
structure's membership

Task routineness
(simplicity)

The degree of predictability in the software-development task
done within the FLOSS community.

Contributor
uncertainty

The unpredictability in development tasks that is introduced
from the need to integrate the work from contributors who are
considered external to the FLOSS development structure.

Task
interdependence

The degree to which developers' development tasks in a FLOSS
community require cooperation.
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[12], committers incur coordination costs with each patch committed to
the community codebase. These costs vary depending on the number of
contributors or other committers with whom the focal committer must
interact as well as the amount of code affected by a proposed patch.
When learning and coordination costs are high, committers have less
time to develop new patches and contribute their own patches to the
community codebase.

Despite these similarities with traditional software development
teams, it is difficult to evaluate FLOSS community performance using
conventional software development metrics. Traditional teams are
evaluated in terms of their ability to meet deadlines and fulfill project
requirements [12]. Because participation is voluntary, FLOSS communities
are rarely able to set and enforce deadlines [81]. Also, where traditional
teams work to fulfill preset development goals on a timeline, FLOSS
communities frequently redefine goals, with no guarantee of when or if
desirable features will be implemented [84]. Given these constraints
tied to voluntary, self-directedmembers, conventional software develop-
ment project performancemeasures are problematic at best, and inappro-
priate at worst, for evaluating FLOSS community performance.

Rather than conventional performance measures, FLOSS communi-
ties' performancemust be estimated based onmetrics tied to communi-
ty productivity. A reasonable measure of FLOSS productivity is the total
commits of patches to a community code base [45]. A commit signals
that a patch has been successfully incorporated and contributes to
progress toward meeting a community goal [40] and only occurs after
the committer has processed relevant information and is satisfied
with the quality of the contribution [101]. From an OIPT perspective, a
greater number of commits suggest that a FLOSS community effectively
manages learning and coordination costs associated with information
transfers tied to contributions and commits. That is, size of project and
number of committers being equal, a high performing FLOSS community
will commit more patches to its codebase.
Fig. 2. Research model.
4.2. Development structure in FLOSS communities

How FLOSS communities process information and coordinate
tasks influences their ability to generate commits and create software
[21,74]. The committal structure shapes how these activities are
performed aswell as thewhen commits occur. The committal structure's
information processing capacity shapes how much effort committers
must expend (i.e., coordination and learning) to commit patches. To
understand FLOSS community performance, it is necessary to examine
how its committal structure relates to projects' progress.

We consider how centralization of a FLOSS community's committal
structure influences the number of commits. In the organization theory
literature, centralization has been conceptualized as a supervisor's span
of control [41]. Centralized structures place responsibility for communi-
catingwith, and overseeing, a large groupof employees in the hands of a
small group of supervisors. In centralized structures, supervisors are
prone to being overwhelmed by the demands of communicating with,
andmanaging, their employees [9]. In decentralized structures, supervi-
sors communicatewith, and oversee, a smaller group of employees. Due
to their narrower span of control, supervisors in decentralized structures
are able to dedicate more of their time to each employee [9].

Even though the relationship between committers and contributors
might not be that of supervisor and subordinate, centralization effectively
describes communication between the twowithin a FLOSS community. A
patchmay require that a committer communicatewith a large number of
contributors and coordinate their activities, which results in a situation
that is analogous to having a wide span of control (i.e., centralized
structure). When communication demands are too broad, they may
overwhelm the committers' capacity for information processing as
the number of contributors increase. A narrower span of control
(i.e., decentralized structure) on the other hand is less likely to over-
whelm any individual committer and spread the workload over a greater
number of committers.

Within the FLOSS context, centralization reflects the proportion of
community members who possess committal rights. Centralization
can be measured as the ratio of committers relative to the overall size
of membership. Decentralized structures are expected to provide a
greater capacity for processing information, since a larger proportion
of committers will not only add to the processing capacity of the
structure butwill distributemore of theworkload across the community.
However, we do not expect that adding committers will be costless
(cf. [98]) since a larger group of committers could increase the
need for coordination [12,21]. As a result, consistent with OIPT, we
believe it is necessary to examine contingencies which increase infor-
mation processing needs and affect the committal structure's ability to
handle information transfer in FLOSS communities.

4.3. Contingency factors that increase IP Needs: Task routineness (simplicity)

Task routineness (simplicity) refers to predictability in FLOSS
community processes [60,79,97]. We use the term task routineness,
but it also could be described as task simplicity. Routine tasks are simple
in nature [96]. Simple tasks require that developers possess a limited
domain of knowledge and exert little effort to complete [38,105]. In
contrast, non-routine tasks have a great degree of unpredictability [79]
and require complex knowledge to complete [96]. As a result, developers
put forth greater effort to complete non-routine tasks [38,105].

Patches may create routine or non-routine work for committers.
A routine or simple patch is one that requires few changes in the
community codebase. Since routine patches require little knowledge
to complete, they require less communication between contributors
and committers when compared to non-routine patches. Therefore,
we expect routine patches to put little strain on information processing
capability of the committal structure. In contrast, non-routine patches
require mastery of greater knowledge of the codebase. A non-routine
patch is one that makes extensive changes in the community codebase
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in order to solve a problem or add functionality. To effectively develop
such a patch, a contributor must understand the codebase's structure
and the implications of adding patches for other files. Such knowledge
is necessary, because good programming practice require one to encap-
sulate similar functionality into the same modules or files [76]. Given
that FLOSS communities generally try to adhere to good programming
practices [58,81], non-routine patches require committers to possess
knowledge on the breadth of a FLOSS project.

Beyond requiring knowledge of the codebase, routine and non-
routine patches create coordination costs for a committal structure.
As the number of files modified by a patch increase, a committer
must also review a correspondingly greater amount of code. In addition,
asmorefiles are impacted, the likelihood that such a complex patchwill
tie to the work of other developers' increases, thereby requiring
committers to coordinate the work of more developers. Furthermore,
since the code is not localized to a specific file, when a patch introduces
a bug, the committer's debugging taskwill bemuchmore complex since
he/she is required to trace a larger number offiles. As a result, we expect
that non-routine patches will place greater coordination demands on
committers, thereby placing a heaver information-processing burden
on the committal structure than would routine tasks.

Furthermore, non-routine patches place higher learning costs on a
committal structure. Contributors who create non-routine patches will
change a greater portion of the source file in the code base. Before a
change is made to any file, the contributor must understand the
contents of that file and understand the best way to make the changes.
To obtain that understanding, contributors will not only need to read
the source code [81], but they will also need to seek the assistance of
committers in helping them understand the impact of their changes
[49]. As a result, greater information-processing requirements and
learning costs are placed on the committal structure due to learning
requirements associated with committing non-routine patches. Hence,
we propose:

H1. Task routineness is positively related to a FLOSS community's
performance.

Centralized committal structures may be well suited for processing
routine patches [53]. A centralized committal structure, despite its
limited information processing capacity, will have fewer coordination
costs tied to committing patches. In a centralized structure, a committer
will bemore aware of the changes beingmade throughout the codebase
as well as their implications for overall FLOSS software. As a result,
committers will need to communicate with few contributors or other
committers, if at all, when considering whether to commit a patch
to the codebase. In contrast, decentralized structures will introduce
extra overhead due to the need to coordinate with other committers
(cf. [98]). This is because committers will need to communicate with
each other as well as contributors about the implications of even
relatively modest change in the code base. Therefore, we expect FLOSS
communities with centralized committal structures to perform at higher
levels as development tasks are more routine.

When patches are non-routine, decentralized committal structures
may result in more productivity. Learning and communication costs
associated with non-routine patches may increase in centralized
development structures [100]. In terms of learning, non-routine
patches require committers to have more specific knowledge of one
part of the code-base or tacit knowledge of how a patch will relate to
the overall codebase. In terms of communication, non-routine patches
require committers to communicate with contributors about complex
patches; but also, invest time in communicating changes with other
committers. In this context, a distributed committal structure, which
allows committers to specialize in different aspects of complex code
base development [38], may be more effective. With a greater number
of specialized committers, information-processing demands are distrib-
uted across the community, resulting in less effort being performed by
any one individual [97]. Coordination and learning activities can then
be performed in parallel, resulting in less overall time needed to
perform them and more patches being committed to the community
codebase. Hence,

H2. As tasks becomemore routine, FLOSS communities with centralized
committal structureswill have higher performance gains than communi-
ties with decentralized committal structures.

4.4. Contingency factors that increase IP needs: Contributor uncertainty

Contributor uncertainty refers to unpredictability in development
processes introduced by adding new FLOSS community members.
New contributors introduce uncertainty in twoways. First, new contrib-
utors introduce variability in learning costs. Before new contributors
can submit patches, they need to acquire knowledge about the code
base. While some of the knowledge is explicit, e.g., one can read the
code, contributors often seek advice on how the project is structured
and issues that need to be addressed frommore experienced community
members [101]. Because the committers are the most knowledgeable
about the code base, they invest time in communicating with contribu-
tors, responding to their questions, and explaining the intricacies of the
code base [101], which translates to higher information processing
demands on community's committal structure. Second, similar to
Brooks' [12] ramp-up effects, new contributors introduce uncertainty
about the quality of patches. This is particularly true of contributors
who are new to the FLOSS development process, as more experienced
contributors are likely have absorbed tacit norms about, and knowledge
necessary to make, contributions to the community. In addition, new
contributors are likely to be the least knowledgeable about the code
base. Due to new contributors' lack of knowledge about norms and the
code base, their patches are more likely to introduce bugs, violate
some of the programming guidelines, or fail to adhere to assumptions,
such as variable access rules and coding conventions. Therefore, patches
from new contributors will require more scrutiny and, therefore, more
effort. Therefore, we expect contributor uncertainty to have a negative
impact on performance. Hence,

H3. Contributor uncertainty will be negatively related to a FLOSS
community's performance.

Centralization may influence contributor uncertainty's influence on
FLOSS community performance. In centralized communities, committers
may become a bottleneck for processing commits. When committers
take time to teach new contributors the codebase's details, they are
drawn away from developing code as well as committing patches.
Moreover, when a problem occurs during a patch's committal, a
committer has to read through the code base to find the bug or commu-
nicate with other developers to find a solution. As such demands on
committers' time increases, a centralized committal structure will
become overwhelmed due to its limited information-processing capaci-
ty [2,97]. In contrast, decentralized communities have more committers
available to share knowledge needed by new contributors. Also, because
decentralized communities have a higher proportion of committers,
they are better able to handle demands of debugging flawed patches.
Where a centralized community could come to a grinding halt while
key committers debug a flaw, committers in decentralized communities
may work in parallel on different patches or bugs. For these reasons, we
argue that a decentralized structure is a better fit for situations in which
contributor uncertainty is high. Thus, when contributor uncertainty is
high, we anticipate that decentralized communities will demonstrate
more commits than centralized communities. Hence,

H4. As contributor uncertainty increases, FLOSS communities with
centralized committal structures will have lower performance gains
than communities with decentralized committal structures.



6 Now known as the black duck open hub since July 2014, see http://openhub.net.
7 It is important to note that where prior research sampled from sourceforge.net [87],

we drew our sample from FLOSS projects listed on ohloh.net. We did so because ohloh.net
represents a broader sample of FLOSS communities than sourceforge.net. When we com-
pared our sample with sourceforge.net, we found that only 22% of the top 1000 projects
listed onohloh.netwere hosted on sourceforege.net. Because it draws on a broader sample
frame, we expect our results to have more external validity than prior research. Interest-
ingly, shortly after drawing our sample, sourceforge.net purchased ohloh.net to increase
its FLOSS-hosting market share [77,78].
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4.5. Contingency factors that increase IP needs: Task interdependence

Task interdependence in software development occurs between
developers when the source code files they are working on have
functional dependencies that require developers to coordinate [21,59].
FLOSS communities rely on two types of processes to manage interde-
pendence [59]: intra-unit interdependence and inter-unit interde-
pendence [97]. Considered a good software practice, intra-unit
interdependence occurs within softwaremodules, where individuals
working on similar and related functionality coordinate their activities
to complete a task [24]. Such organization allows modules to exhibit a
high degree of within-module interdependency, which has been
referred to as cohesion [76]. Since similar functionality is contained in
single modules, developers working in each module must share similar
knowledge in order to collaboratemore effectively and a single owner is
responsible for coordinating its development [21,24]. Due to shared
knowledge and centralization, intra-unit interdependence enables
more effective coordination and thereby lowers demand on a FLOSS
communities' information processing infrastructure.

Inter-unit interdependence occurswhen communitymembersmust
coordinate activities due to functional dependencies between separate
modules [21].Where intra-unit dependencies address problems localized
to a single module, inter-unit dependencies address problems that
require altering one ormoremodules. Because contributors often possess
module-specific knowledge, inter-unit coordination is more difficult than
intra-unit coordination [38,97]. It forces committers to perform more
development-related information-processing tasks and invest less time
in creating patches. As a result, inter-unit dependencies result in higher
information coordination costs across modules [38], higher learning
costs due to the need to build shared knowledge necessary for developing
the patch [101], and reduces overall productivity of committers in the
community. Due to these coordination and learning costs, inter-unit
dependencies effectively negate distributed development structures'
benefits limiting developers' ability to specialize in specific modules.
In sum, task interdependence is higher when inter-unit independence
is higher and intra-unit interdependence is lower.

Due to language and knowledge differences across modules, FLOSS
community members have a harder time directly coordinating patches
that address inter-unit interdependences. As a result, committers must
coordinate collaboration across modules and are more likely to become
bottlenecks in information flows and development processes. When
inter-unit interdependencies are reduced, there may be additional
unintended productivity benefits in FLOSS communities. Because
committers are coordinating less, they have more time for information
sharing and specialized development activities (Conaldi and Lomi,
2013). As a result, the whole community benefits from committers'
increased responsiveness to communication and knowledge sharing
[97] and from the specialization that results from modularization
[38]. These improvements make the community's overall development
more efficient and increase its overall development performance.
Therefore,

H5. Task interdependency will be negatively related to a FLOSS
community's performance.

Since task interdependence is created from dependencies in the
source code [12,21,95], we argue that coordination-related information-
processing requirements may be mitigated by the modularity of the
software design. Modularity refers to the number of interdependencies
across software modules. Limiting cross-module dependencies reduces
the need for coordination and communication because contributor's
development tasks would be restricted to specific modules [21]. Such a
limitation is equivalent to the strategy suggested by Galbraith [33] for
creating self-contained tasks. Furthermore, one of the assumptions that
Brooks [12]mentions as towhatwould lead to an increase in the number
of communication channels is serialization (i.e., dependencies) between
tasks. Removing the serialization constraint would reduce the need to
communicate between developers. Collectively then, when the source
code itself exhibits few inter-unit interdependencies (e.g., between
modules) and more intra-unit interdependencies (e.g., within a single
unit), and then there is little need for contributors to coordinate their
activities across modules [6,66,83,95]. Modular designs enable devel-
opers to work in parallel, and by reducing coordination requirements;
it also reduces the coordination-related costs associated with adding
more committers [5]. Therefore, we argue that low centralization
(e.g., distributed development) is a good fit for communities with
more modular codebase (lower inter-unit interdependence).

Specifically, when inter-unit interdependence is high, we anticipate
that FLOSS communities with a centralized committal structure and
less modular codebase will demonstrate higher performance when
compared to communities with decentralized committal structure
and less modular codebases. We attribute this higher performance
to centralized communities ability to manage coordination-related
information-processing requirements that result from less modular
source code design. Therefore,

H6. As task interdependency increases, FLOSS communities with
centralized committal structures will have higher performance gains
than communities with decentralized committal structures.
5. Research method

In order to test ourmodel,we used the source code repositories of 237
projects. We drew our variables by coding data in these repositories.
Below,wedescribe our sampling anddata collectionprocedures, followed
by the construct operationalizations and a description of the controls
used.

5.1. Sample

Similar to prior FLOSS research [22], we drew a theoretical sample of
FLOSS communities. The following logic guided our sampling. First, we
limited our sample frame only to projects that were likely to have
ongoing development activity [22]. This is important because a large
proportion of FLOSS projects are dormant [47]. Absent active develop-
ment, we would lack the ability to observe variations in performance
across communities. Second, we used an established repository to iden-
tify FLOSS communities. Specifically, we used ohloh.net,6 a website that
lists over 275,000 FLOSS projects, to identify the population of active
FLOSS projects. Third, consistent with Wu et al. [103], we drew data
from a subset of the top 1000 listed projects. Fourth, consistent with
prior work, we selected a subset of projects that used similar program-
ming languages (e.g. [58,63]). This is important because languages vary
in size and complexity ([63]; Wyuker; Jones; Seemidharefs). Therefore,
we examined FLOSS communities that are widely diffused and have
varying programming philosophies: C, C++, and Python. Using these
heuristics, we identified 289 potential projects out of the top 1000 listed
projects on ohloh.net for inclusion in our analysis.7

5.2. Data collection

Consistent with prior work using source code repositories (e.g. [42,
56,63,103]), we screened the 289 projects and excluded any projects

http://openhub.net


Table 3
Descriptive statistics for the project sample.

Median Mean STD

Age
In weeks relative to 1-1-2007 4 5.64 48.7
Popularity 57.5 192.1 447.71
Committers count per quarter 5 10.84 14.489
Contributors count per quarter 8 16.29 26.786
Commits count per quarter 116 289.2 456.656

Table 4
Variable operationalization.

′ Definition Operationalization

Performance
(PERF)

Progress made toward meeting
the demands of the FLOSS
community.

The tallied count of commits
listed in the repository within a
three month window [40,45].

Centralization
(CENT)

The degree to which the
committal activity in a FLOSS
community is concentrated in
the hands of a small group of
committers relative to the
overall size of the development
structure's membership.

The ratio of committers to total
number of developers in the
community [75].

Task routineness
(TROUT)

The degree of predictability in
the software development task
done within the FLOSS
community.

The average number of files
changed per commit.

Contributor
uncertainty
(CUNC)

The unpredictability in
development tasks that is
introduced from the need to

The ratio of new contributors to
the total number of
contributors during the analysis
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that were inactive,8 umbrella projects hosting multiple projects, or had
inaccessible code repositories. As a result, we were left with 237
projects that we sampled our observations from. We then downloaded
these projects' source code repositories and coded committal activity
in three-month increments. We also extracted names of the unique
contributors from the committal logs of the revision control system.
As a result, we collected a total of 1832 quarterly observations from
237 projects for activity between Jan 1st, 2007 and June 30th, 2009.
Table 3 provides the sample's descriptive statistics.

5.3. Variables

Table 4 lists the variables we collected from this sample and
provides a summary of the corresponding construct definitions and
operationalization.

5.3.1. Performance
Performance was operationalized as the number of completed

commits in a period [40,45]. To estimate performance, we counted the
total number of commits made by a project performed during a three
month period. Given thewide variance in the number of commits across
projects, we performed log transformation to normalize the distribution
of the data.

5.3.2. Centralization
Centralization was operationalized as the ratio of committers to the

total number of developers (i.e., contributors and committers) in a
community. The higher the ratio, the greater the distribution of workload
representing more decentralized structures; lower ratios represent more
centralized structures. To estimate centralization, we counted the total
number of committers and contributors as identified from the revision
control system for the whole analysis period. We then calculated the
ratio of committers to total number of committers and contributors as
an estimate of decentralization of committal structure. We subtracted
that ratio from one to create a figure that increased with centralization.
Our calculated figure was not normally distributed with distributional
masses close to both zero and one. As a result, we transformed the
variable into a nominal variable using a median split [57], where zero
represents a decentralized committal structure and one represents a
centralized committal structure.9

5.3.3. Task routineness
Task routineness10 (simplicity) was operationalized as the total

number of source files changed per commit. For software development
tasks, simple routines and steps can be implemented and grouped into a
single source file. Non-routine development tasks have unique char-
acteristics and draw from different functional modules and require
the modification or addition of more than a single source file. Changes
to more source files requires developers to acquire the embedded
knowledge and increases the risk of bugs or conflict with another
developer, as the likelihood of developers working in parallel on the
same file increases [21]. Therefore, the average number of files changed
per commit will be inversely related to the routineness of the develop-
ment task. To estimate task routineness, we counted the total number
of files changed or added over the analysis period. We then divided
that number by the number of commits to estimate the average number
of files changed per commit. We then log transformed the variable to
8 Projects were considered inactive if they didn't have at least a single commit per
quarter during the timeframe of our study.

9 Since this is an important construct in ourmodel, we test the robustness of our results
using alternative splits to rule out that our results are an artifact of the median split. We
use the median split results because they are the easiest to present and interpret. See
Appendix A for details.
10 Task routineness refers to the predictability of the task. Predictable tasks are analyzable
and therefore easy to break down into simple routines, grouped into a single source file.
There is clearly overlap between this and the concept of task complexity.
normalize its distribution and mean center as recommended by Aiken
and West [3] when testing for interaction terms. Since our variable is
mean centered, we multiply it by negative one to reverse the direction
of the variance. This was necessary because routine tasks are associated
with a smaller number of changed or added files.

5.3.4. Contributor uncertainty
Uncertainty in task environment refers to unpredictability tied to

integrating work of new or external contributors to a FLOSS project.
New contributors are likely to create ramp-up effects either because
they know less about the current code base or time required to learn
about the development process [12]. As a result, committers find
themselves spending more time reviewing and committing the work
of first time contributors [101]. We identified the number of unique
contributors for the analysis period from the committal logs of the
revision control system. We estimated contributor uncertainty using
the ratio of newcontributors to the total number of committers. However,
given the distributional characteristics with masses close to the values of
zero and one,weperformed amedian split anddichotomized the variable
into low (zero) and high (one) uncertainty [57].

5.3.5. Task interdependence
Task interdependence refers to the degree to which the completion

of development tasks requires developers to cooperate. To estimate
the level of dependencies across and within modules, we leveraged
the leading eigen-vector method to partition the dependency graph of
the source code and obtain an estimate of its modularity [67]. Themodu-
larity value is highwhen cross-module dependencies are low (i.e., loosely
integrate the work from
contributors who are
considered external to the
FLOSS development structure.

period.

Task
interdependence
(TINT)

The degree to which the
development tasks of the
developers in a FLOSS
community require cooperation
to be completed.

The modularity measure
[68,69] of the leading
eigen-vector partitioning [67]
of the dependency graph for
the beginning of the analysis
period.
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coupled) andwithin-modules dependencies are high, suggesting that the
modules are partitioned with very little interdependence of tasks across
modules. First, we extracted the dependency graph for a snapshot of the
source code at the beginning of the analysis period. We then examined
how well the graph could be partitioned into sub-graphs. Next, we
extracted the modularity measure for the resulting partition from the
leading eigen-vector method. We then mean centered the variable since
we would be testing an interaction term [3]. Finally, we multiplied the
value by negative 1 since the modularity estimate was inversely related
to task interdependence.

5.4. Controls

5.4.1. Age of project
Age was measured in terms of number of months from the time the

first committal was made to the source code up to the first day of the
analysis period. FLOSS project may affect the number of committers
since older projects have more established roles and procedures for
coordination than younger projects. In addition, age can serve as a
proxy for the stage in which the FLOSS project is, which could affect
the level of activity in the project and, thereby, its performance [92].

5.4.2. Programming language
Because we selected a set of programming languages with varying

philosophies, we controlled for the FLOSS project language. This is
important because some languages, like Python, put more emphases
on productivity and readability rather than performance [63,92]. As a
result, we created dummy coded variables to control for programming
language in our analysis.

5.4.3. Project popularity
A FLOSS project's popularitymay attract developers due to the social

benefits associatedwith participation and exposure [52,55]. In addition,
popular projects tend to have a greater number of software users,which
means the pool of potential contributors to the project is larger. To
measure popularity, we drew the number of users of a project from
ohloh.net.

5.4.4. Size of project
Projects with a larger code base are likely to be more complex and

require more patches. Research has found that rate of change in the
source code is closely related to the Source Lines of Code (SLOC) [11].
Therefore, we control for size of the code base, estimated as SLOC,
at the beginning of the analysis period, which allowed us to compare
differently sized projects.

5.4.5. Number of committers
While we include the ratio of committers to new contributors in our

study, the total number of committers may have implications for FLOSS
project performance. Larger projects can perform a greater number of
commits simply by virtue of having a larger group of committers. As a
result, we controlled for the number of committers, as we are interested
in the effects of structure that are independent of FLOSS project size.

6. Analysis and results

We used a mixed-model analysis to evaluate our hypotheses [8,19].
Specifically, we used the lme4 library [7] for GNU R [80] to estimate a
random interceptmodel where observations are nestedwithin projects.
Our final model specification involves variables that vary within pro-
jects over time (level 1), variables that vary across projects but do not
vary over time (level 2), Interaction terms, and multiple error terms.11
11 Model specification can be inferred from Table 6 based on the values included in each
column.
Level 1 variables are Centralization (CENT), Task Routineness
(TROUT), and Contributor Uncertainty (CUNC). The first step in mixed
model analysis is to assess the Interclass Correlation Coefficient (ICC)
for our variables. We found our level 1 variables to have ICC values of
0.45, 0.43, and 0.18 respectively. The non-zero ICC values suggest that
some of the variability in our data can be explained simply by project
membership (i.e., they also have level 2 effects). Econometricians
refer to this problem as the endogeneity problem, and to address it,
we include the group mean for each of our level 1 variables into our
model to assess the level 2 effect for our variables [34]. We denote
these level 2 variables with the grp suffix. Task Interdependence
(TINT) had an ICC of 0.97, meaning the variability is mostly at level
2 [8]. As a result, it will be treated as a level 2 variable, along with all
our control variables that do not vary by time, with the exception of
the time effect.

We follow a bottom up approach in building our model [102]. We
start without intercept only model that we will be used as the base to
compare all our models. We start by including each level 1 effect and
check if it has a significant random effect. After completing this step,
we identify Time, along with all our level 1 variables to have associated
random effects. In addition to the residual error term, all our random
effects are assumed to be normally distributed, and have zero mean
and non-zero variance.

The next step in our analysis protocol is to include level 2 effects,
then level 1 by level 1 interactions, and finally cross level interactions.
Using cross level interaction terms, we can assess whether the effects
of our predictors change as projectmembership changes. In longitudinal
data analysis, the interaction of time with level 2 variables is assessed to
model any time growth effects. We found all the time interaction terms
to be insignificant andwere excluded from themodel to reduce its com-
plexity [8,34].

To validate the assumptions ofmixedmodel analysis, we graphically
assessed the distributions of our variables and residual plots and found
no signs to the violation of the normality assumptions or homoscedas-
ticity. Furthermore, inter-variable correlations had low magnitudes
(see Table 5) suggesting discriminant validity and no violation of the
independence assumption. Finally, we obtained a maximum value of
0.0827 for Cook's d suggesting that there are no outliers exerting any
undue influence on our results [19,71]. Overall, we did not detect
any problematic data points or violations of mixed-model analysis's
assumptions and feel confident about the validity of our results.

Table 6 summarizes the results from our mixed-model analysis
and gives estimates of the β coefficients of our different models [19].
Inference tests were based on t-tests, where Satterthwate's approxima-
tion of degrees of freedom was used to obtain conservative p-value
estimates [51].

Effect size was estimated using reduction in residual, intercept, and
slope random variation, which we refer to as pseudo R2 [8,34]. Level 1
effects would result in a reduction on residual variance. Level 2 effects
would result in reduction in intercept random variation. Finally, cross
level interactions would result in random slope variation. Since the
main effect model included both level 1 and level 2 effects, we get two
pseudo R2 components which are 61.7% reduction in residual variance,
and 50% reduction in intercept variance.

We found support for all our main effects hypotheses. The null
hypotheses that the regression coefficient is different from zero is
rejected with an alpha b .05 for t-tests. We found that task routineness
(TROUT) has a significant relationship with PERF with a coefficient of
0.44 (p b .001) in themain-effectmodel; H1was supported. Furthermore,
the positive 0.2 (p b .001) level 2 task routineness coefficient (TROUTgrp),
suggests that projects that generally face more routine tasks perform
better on average than projects that are faced with more complex tasks,
lending further support to H1. Similarly, for H5, there is a negative
relationship between task interdependence (TINT) and performance.
The results suggest that TINT ha a significant relationship with PERF
with a coefficient of−0.91 (p b .001).



Table 5
Variable correlations and descriptive statistics.

PERF CENT TROUT CUNC TINT AGE PER isGPL isC isCpp isPy POP SLOC COM

PERF 1.00
CENT 0.22 1.00
TROUT 0.24 0.03 1.00
CUNC 0.16 0.33 0.10 1.00
TINT -0.27 -0.03 0.21 -0.01 1.00
AGE 0.06 0.11 0.00 0.02 -0.15 1.00
PER -0.06 0.03 -0.02 -0.15 -0.01 0.04 1.00
isGPL -0.01 -0.01 0.01 0.02 0.00 0.10 0.05 1.00
isC 0.21 0.12 0.10 0.02 -0.11 0.34 0.00 0.10 1.00
isCpp 0.20 -0.06 -0.24 -0.06 -0.29 -0.09 -0.01 0.11 0.03 1.00
isPy -0.13 -0.05 0.10 0.01 0.20 -0.29 0.00 -0.15 -0.63 -0.32 1.00
POP -0.20 -0.13 -0.01 0.00 0.09 -0.39 -0.03 -0.11 -0.18 0.08 0.18 1.00
SLOC 0.44 0.14 -0.28 -0.02 -0.44 0.32 0.06 -0.04 0.35 0.29 -0.36 -0.26 1.00
COM 0.66 -0.08 0.14 0.15 -0.22 0.13 -0.01 0.04 0.19 0.17 -0.07 -0.24 0.39 1.00
min 0.00 0.00 -4.64 0.00 -0.42 -7.61 1.00 0.00 0.00 0.00 0.00 -0.21 -6.01 -1.77
mean 4.68 0.48 0.00 0.50 0.00 0.00 4.54 0.42 0.82 0.43 0.14 0.00 0.00 0.00
median 4.84 0.00 0.01 0.00 0.03 0.27 4.00 0.00 1.00 0.00 0.00 0.00 0.01 0.02
max 8.33 1.00 5.03 1.00 0.65 13.16 10.00 1.00 1.00 1.00 1.00 0.15 3.73 3.05
std 1.64 0.00 0.86 0.00 0.29 2.65 2.97 0.00 0.00 0.00 0.00 0.11 1.41 1.15
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For contributor uncertainty, we found that projects that have more
new contributors perform worse on average than projects that have
less new contributors. This can be inferred from the group level contrib-
utor uncertainty coefficient (CUNCgrp) which is−1.02 (p b .001), lend-
ing support to H3. However, within a project, adding a new contributor is
likely to increase performance with a positive CUNC coefficient of 0.18
(p b .001), suggesting a relationship opposite to the onewehypothesized
Table 6
Model fitting.

Null Main effects Interaction effect

CENT ∗ TINT 0.27 (0.24)
CENT ∗ CUNC −0.17 (0.08)⁎

CENT ∗ TROUT 0.27 (0.10)⁎⁎

TINT −0.91 (0.25)⁎⁎⁎ −1.02 (0.27)⁎⁎⁎

CENT 0.50 (0.06)⁎⁎⁎ 0.59 (0.07)⁎⁎⁎

CUNC 0.18 (0.04)⁎⁎⁎ 0.25 (0.06)⁎⁎⁎

TROUT 0.44 (0.07)⁎⁎⁎ 0.34 (0.08)⁎⁎⁎

CENTgrp 0.78 (0.17)⁎⁎⁎ 0.83 (0.17)⁎⁎⁎

CUNCgrp −1.02 (0.20)⁎⁎⁎ −1.02 (0.20)⁎⁎⁎

TROUTgrp 0.20 (0.17) 0.22 (0.17)
PER −0.03 (0.01)⁎⁎ −0.03 (0.01)⁎⁎

AGE −0.08 (0.02)⁎⁎⁎ −0.07 (0.02)⁎⁎⁎

isGPL −0.10 (0.11) −0.11 (0.11)
isC −0.12 (0.17) −0.09 (0.17)
isCPP 0.10 (0.12) 0.12 (0.12)
isPy −0.47 (0.20)⁎ −0.45 (0.20)⁎

POP 0.56 (0.62) 0.58 (0.62)
SLOC 0.01 (0.04) 0.02 (0.04)
COM 1.38 (0.04)⁎⁎⁎ 1.36 (0.04)⁎⁎⁎

(Intercept) 4.64 (0.09)⁎⁎⁎ 4.56 (0.12)⁎⁎⁎ 4.51 (0.12)⁎⁎⁎

Num. obs. 1832 1832 1832
Num. groups 235 235 235

Variance
Residual 0.94 0.36 0.35
Intercept 1.80 0.90 0.90
CENT 0.16 0.12
CUNC 0.05 0.06
TROUT 0.43 0.45
PER 0.01 0.01

Pseudo R2

R2
Residual – 61.7% 62.7%

R2
Intercept – 50% 50%

R2
CENT – – 25%

S.E. between parentheses.
⁎⁎⁎ p b 0.001.
⁎⁎ p b 0.01.
⁎ p b 0.05.
in H3. We attribute this to the operationalization of our variables, since
adding a new contributor bringswith him/her a source code contribution
within a project. However, when comparing across projects, the level
2 effect of contributor uncertainty (CUNCgrp) clearly illustrates support
for H3 given how projects with less new contributors show higher
levels of performance.

We found support for all but one of our moderation hypotheses.
The interaction model estimated the interaction between our main
effect variables and CENT, which represents the centralization of a
FLOSS community's committal structure. The interaction effects model
included both level 1 by level 1 interaction and cross level interactions.
The level 1 interactions (TROUT and CUNC interactions) reduced the
residual variation by only 1%. In Psychology and Management stud-
ies, the median effect size for interaction studies over the past
30 years was around 0.002 [1]. McClelland and Judd [62] attribute
this small effect size to the small residual variance, after accounting
for the main effects, which is used to detect moderation effects,
which also might explain the difficulty in detecting a significant
effect for our unsupported moderation effect. The cross level interac-
tion of task interdependence reduced random slope (CENT) variation
by 25%.

H2, which suggests FLOSS communities with centralized committal
structures are a better fit for routine tasks, was supported. Analysis
yielded a positive, significant coefficient of the TROUT ∗ CENT inter-
action (0.27, p-value b 0.01). To understand this interaction's implica-
tions, we plotted the simple slopes for the interaction term (see Fig. 3).
The plot suggests that as the development task grows more routine,
performance increases at a higher rate for centralized committal
structures than for decentralized committal structures [3,19]. The
simple slope for decentralized FLOSS communities is represented
by the main effect coefficient associated with TROUT in the interaction
model (0.34, p-value b 0.0001). We found that the TROUT simple
slope for the decentralized reference group was significantly different
from zero [3,19].

To obtain the TROUT simple slope for the centralized FLOSS communi-
ties, we added the TROUT ∗ CENT coefficient to the TROUT coefficient
(0.34, p-value b 0.0001). The significance test for this simple slope was
obtained by reverse coding the CENT variable such that the centralized
FLOSS projects are the reference group and then refitting the interaction
model [3,19]. The higher increase in performance is indicated by the
steeper and positive slope of the centralized committal structure line
(see Fig. 3). Since TROUT is a continuous and mean-centered variable,
the significance of the interaction term TROUT ∗ CENT (p-value b 0.05)
was used to confirm that the difference in the simple slopes between
the two levels of CENT is indeed significant [3].
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The negative and significant slope of the CUNC ∗ CENT coefficient
(−0.17, p-value b 0.05) lends support to H4, which suggests that a
decentralized committal structure is a better fit for dealing with
higher contributor uncertainty (i.e., the increase in numbers of new
contributors). This result also confirms that the simple slopes for cen-
tralized and decentralized FLOSS communities are significantly differ-
ent [3]. To illustrate this difference, we plotted the simple slopes for
the interaction term (See Fig. 4). The graph shows that the effect of un-
certainty on performance has a positive and steeper slope for
decentralized communities than for centralized communities. The
CUNC simple slope for centralized FLOSS communities is non-
significant (0.0837, p-value N 0.1),12 suggesting that contributor uncer-
tainty has no impact on performance for centralized FLOSS communi-
ties. On the other hand, the CUNC simple slope for decentralized
communities was positive and significant (0.25, p-value b .05), which
is contrary to our expectations.

Finally, we found no conclusive support for H6, although the
coefficient of the TINT ∗ CENT term (0.27, p-value N 0.1) while non-
significant, follows our predicted positive relationship. It is possible
that we were unable to detect a significant relationship because
only a small portion of residual variance remains after fitting the
direct effects of the model, resulting in the moderation effects
being hard to detect [62]. If the results were significant, they would
suggest that FLOSS communities with centralized committal structures
perform better than communities with decentralized committal struc-
tures as task interdependence is increased. To illustrate this, we plotted
the simple slopes for the interaction term (see Fig. 5). The steeper slope
for the relationship between TINT and PERF for decentralized committal
structures suggests that centralized committal structures are a better fit
for increasing task interdependence, as performance drops at a much
slower rate (−0.75, p-value b 0.001) than in decentralized committal
structure (−1.02, p-value = b0.0001).13 Furthermore, when looking
at the increasing performance (right to left side of the graph), we
observe that decentralized committal structures have higher perfor-
mance gains as task interdependence is reduced throughmoremodular
software design. However, the difference between these lines needs
12 The significance test was obtained after reverse coding CENT and refitting the interac-
tion model and using the significance test for the CUNC coefficient [3].
13 The significance test was obtained after reverse coding CENT and refitting the interac-
tion model and using the significance test for the TINT coefficient [3].
further investigation, as the non-significant interaction coefficient
TINT ∗ CENT (0.27, p-value N 0.1)means that theremight not be any dif-
ference between centralized and decentralized structures in our data
[3].
7. Discussion

We used an organization information processing lens to better
understand how FLOSS community structure influenced perfor-
mance. We forwarded the argument that community structure ties
to performance varied with the task routineness, community com-
position, and task interdependence. Overall, we found support for
all our hypotheses but one (Table 7) and summarize the main contri-
butions in Table 8.

In our first set of hypotheses, we found that FLOSS communities
will perform better when their development tasks are simpler or
more routine (H1). We attributed the improved performance to the
reduced information-processing requirement of routine tasks,
which are less likely to overwhelm the committal structure. This
finding suggests that FLOSS communities could improve their per-
formance by simplifying development tasks. Specifically, communi-
ties should invest their time in organizing the source code such
that tasks requiring similar functionality may be managed by modi-
fying fewer files [76].

In addition, we found support for centralized committal struc-
tures (H2) being a better fit for routine development tasks. This is
due to lower coordination requirements between community
members operating within centralized committal structures when
compared to decentralized structures. When tasks are simple or
routine, we reasoned that committers will be required to communi-
cate less with other committers as well as will receive fewer re-
quests for help from contributors. Because less communication is
required to create patches ready to be committed to the codebase,
we believe that community information processing capability will
be less likely be overwhelmed and more likely to enable perfor-
mance. Because we did not directly measure the amount of communi-
cation within the community, we believe that this finding suggests a
need for research that examines the quantity and quality of communi-
cation tied to routine and non-routine FLOSS development. Because
such communication is not included in the FLOSS codebase, it may
be necessary to employ different research methods (e.g., survey
based or qualitative techniques) to investigate the implications of
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Table 8
Summary of contributions.

Finding Impact

FLOSS communities performing simple
tasks perform better.

• Importance of good source code design to
simplify development.

• Contributors should work closer to the
community and make small incremental
changes rather than work in isolation and
accumulate their patches into a single
patch that is hard to incorporate.

Centralized committal structures are a
better fit for simpler routine tasks.

• There is no single superior structure.
• The committal structure should match
the needs of the community.

Decentralized committal structures are a
better fit under high contributor
uncertainty.

• Decentralized committal structures are
necessary if community involvement is
valued.

• Brooks' law is not obsolete; the committal
structure has to be overwhelmed for it to
become obvious.

Task interdependence increases
information-processing requirements
for a FLOSS community and reduces
performance.

• Importance of modularizing the source
code and its effect on the performance of
a FLOSS community.

• Further validation of the Newman [67]
modularity measure.

Decentralized committal structures are a
better fit under conditions of low task
interdependence.

• Centralized committal structures might
be the only way to continue to maintain
and develop tightly coupled code bases.

• Decentralized committal structures are
enabled by modular design.

• Brooks' and Raymond's views are
complementary. Raymond explains how
FLOSS development is conducted under
conditions of fit, while Brooks' views
become apparent under condition with
lack of fit.
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communication, task routineness and community structure on
FLOSS performance.

Collectively, these results point to routineness as an important con-
tingency that needs to be matched with centralized and decentralized
committal structures in order to enhance FLOSS community perfor-
mance. Even though FLOSS communities with decentralized committal
structures might have a higher capacity to process information, our
findings imply that they may not necessarily outperform more cen-
tralized communities. In fact, they suggest that FLOSS projects that
engage in routine development activities, either due to the simplicity
of the problem or the maturity of project, operate effectively with a
centralized committal structure. On the other hand, when problems are
less routine and require extensive changes to the codebase, our findings
suggest that decentralized, distributed committal structures may enable
higher FLOSS project performance. However, as we note below in our
Table 7
Summary of empirical findings from the higher-order model.

Hypothesis Coefficient Support

H1: Task routineness is positively related to a
FLOSS community's performance.

TROUT: 0.44
p-value b 0.001

Supported

H2: As tasks become more routine, FLOSS
communities with centralized committal
structures will have higher performance
gains than communities with decentralized
committal structures.

TROUT*CENT:
0.27
p-value b 0.01

Supported

H3: Contributor uncertainty will be negatively
related to a FLOSS community's
performance.

CUNCgrp: −1.02
p-value b 0.001
CUNC: 0.18
p-value b 0.001

Supported when
comparing
projects,
not within project

H4: As contributor uncertainty increases,
FLOSS communities with centralized
committal structures will have lower
performance gains than communities with
decentralized committal structures.

CUNC ∗ CENT:
−0.17
p-value b 0.05

Supported

H5: Task interdependency will be negatively
related to a FLOSS community's
performance.

TINT: −0.91
p-value b 0.001

Supported

H6: As task interdependency is increased,
FLOSS communities with centralized
committal structures will have higher
performance gains than communities with
decentralized committal structures.

TINT ∗ CENT:
0.27
p-value N 0.1

Not support
discussion of H5 and H6, the community structure's implications for
performance may be limited by interdependencies in the codebase.

In our second set of hypotheses, we probed the implications of
contributor uncertainty and structure for FLOSS performance. We
did not find support for our hypothesis that suggested that increased
uncertainty attributable to new contributors participate will have a
detrimental effect on performance of a project, however we did find
evidence that projects with less uncertainty from new contributors
tend to perform generally better (H3). Our analysis did not support
Brooks' view that new contributors, and their patches, will slow develop-
ment cycles and increase costs of software. One could speculate that that
the dichotomization of the uncertainty variable was the source of our
failure to detect effects tied to uncertainty within project [57]. However,
as noted in the method, our analysis adhered to best practices and was
robust to several post-hoc tests. A plausible alternative explanation for
our findings lies in the spirit of FLOSS communities. It could be that
when uncertainty overwhelms committal structures, that community
members will rally, organize committal activities, and ensure that
the FLOSS project continues to advance. To investigate this alternative
explanation would require either conducting case study research
focused on analyzing the content of communication among committers
or collecting data on the number of patches ignored by committers.
Future research that examines FLOSS communities' response to new
contributors and uncertainty constitutes a rich direction.

Although uncertainty did not directly affect performance within
project, we did find a significant negative interaction between
centralization and uncertainty. We found that FLOSS communities
with decentralized committal structures tend to perform better
under higher uncertainty (H4). This is interesting, because our anal-
ysis suggests that uncertainty did not affect centralized committal
structures' performance. The interaction effect could be attributable
to decentralized committal structures being able to process informa-
tion requests and patches forwarded by new contributors while also
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continuing to commit patches from existing contributors. Since
decentralized committal structures are able to process patches in
parallel, themajority of committers may be able to continue commit-
tal activity, even as a minority of committers provides the new contrib-
utors information and attention necessary to become active members of
the FLOSS project. This suggests a positive cycle that is spawned if
committers are able to invest in new contributors. In such a case, a
FLOSS project may be more like to convert new contributors to regular
contributors and increase overall productivity of the community.

What is interesting about this finding is that it directly speaks to the
tension between Brooks' and Raymond's views. The lack of performance
improvement for centralized structures shows, as Brooks' had anticipated,
that there are no performance gains with the addition of new
contributors. The performance increase of decentralized structures
under conditions of uncertainty suggests, as Raymond's work
implies, that decentralized communities may be more apt to become
bazaars of ideas, integrate patches offered by new contributors, and
yield more commits. In light of these contrasting implications, we
believe it may be premature to declare Brooks' law obsolete or irrelevant
to FLOSS communities. Rather, it seems that Brooks' law applies to FLOSS
communities when the committal structure reaches the limits of its
information-processing capacity (e.g., centralized under uncertainty).
In such a circumstance, we believe that even if one added a limitless
number of contributors one would see a relatively flat level of perfor-
mance at the project level. In order to address this limitation of central-
ization, we believe would require FLOSS community organizers to
reduce bottlenecks, decentralize, and increase their capacity to process
information. However, because we do not investigate how changing
FLOSS community structures ties to performance, this implication
suggests a need for research that examines how shifts in FLOSS commu-
nity structure ties to performance.

In our final set of hypotheses, we examined the implications of
software's modularity and community structure on performance. To
examine these hypotheses, we introduced to the literature an objective
measure of modularity that is derived from the actual codebases of
FLOSS projects [67]. We found that communities with fewer interde-
pendencies in their development task (e.g., greater modularity in their
software) performed better (H5). We attribute this improved perfor-
mance to the lower coordination costs which frees committers to
perform more development or commits to a code-base. The need from
coordination stems mainly from dependencies between the source
files on which different developers work, which creates the need for
coordination Crowston [21]. By improving the design of the source
code to exhibit higher modularity (i.e., low coupling between modules
and high cohesion within a module), our findings imply that FLOSS
communities can improve their performance.

When FLOSS communities do not develop highly modular codebase,
we expected that centralized committal structures are more apt to lead
to higher performance (H6). Froman information processing viewpoint,
this is due to the need for greater centralization to better coordinate
highly interdependent tasks. In communities with decentralized
committal structures and less modularity, committers will have to
maintain communication channels with a larger group of committers
tomaintain the functional integrity of the software [12,21].With higher
task interdependence, the amount of information that needs to be
exchanged in each channel will increase, making it impossible for a
committer in a decentralized structure to quickly process patches.
Therefore, when software modularity is low and interdependence is
high, our analysis suggests that centralized structures are more apt to
lead to FLOSS community performance. While our results approached
significance (e.g., p N .01), we did not find conclusive evidence in our
data to support this view. One explanation is that interaction effects
are very difficult to detect given that the residual variance left from
fitting the direct effect is small [62]. Consequently, we believe there is
a need for future research that further explores the interplay between
modularity and committal structure.
Overall, this finding speaks to the importance of software design
and FLOSS community structure. In order to enable Raymond's
bazaar of ideas, it is important that FLOSS communities with large
committal structures construct software with highly modular
design. Adding developers or improving performance comes at an
information-processing cost, and FLOSS communities will be able
to leverage contributions of new contributors when the committal
structure and software's structure makes it possible to do so. Absent
appropriate community structure and modularity, the community
must make a trade-off to either reduce their information-processing
needs or increase information-processing capacity in order to enable
performance.

8. Limitations

Although we took great care in the design of our study, it is
important to note limitations associated with our method. First, we
aggregated our data into threemonth blocks. In prior work, researchers
have used anywhere from a one month to a twelve month block.
Although a sensitivity analysis using a subset of the data suggested
that our results would be essentially unchanged at a monthly unit
analysis, we lacked the data to evaluate whether a one year window
more accurately captured reality. We were unable to analyze the full
dataset at a month-by-month level due to limited computation
resources. As research methods and technologies advance, we believe
future research may want to examine the influence of varying time
periods on FLOSS community structure and performance.

Furthermore, due to some variables' distribution, we dichotomized
them. Such an approach might yield spurious relationships and result
in lowering the power of the statistical analysis [57]. However, we
ruled out the possibility that our results are spurious by conducting
the analysis using alternative methods for factoring the variables and
found the results to hold (see Appendix A). We used the results of the
dichotomized variables because they are easier to present and interpret.
The fact that we found significant results despite the lower statistical
power of our chosen method suggests that the actual effect sizes could
be larger.

Finally, it is important to note that our analysiswas based on archival
data drawn from actual FLOSS community codebases. As a result, our
ability to operationalize theoretical constructs was limited to features
of the data archives. Althoughwe took great care tomap our theoretical
variables to the data, we believe that critics could question the proxy
nature of our objective measures and their precise mapping to the
constructs. For example, the ratio based centralization variable might
not capture all the complexity associated with the construct. There is a
possibility that some FLOSS projects that had no contributors might
seem highly decentralized because the committers are the only
contributors, as in some tightly controlled FLOSS projects. Some
quick analysis of our data shows that only 161 observations out of
1832 had no contributors. Excluding these observations from the
analysis yielded similar results. While the use of such measures is very
challenging, we believe that it is still useful in advancing research in
this area. Future research can supplement our analysis of archival data
with survey or qualitative data.

9. Future research

Although our work has important implications for the committal
structure of FLOSS communities, care should be taken not to infer
from our analysis how to structure communication structures within
FLOSS communities [23]. There is evidence that a FLOSS community's
communication structure need notmatch its development structure [64].
It would be interesting to examine how the committal (development
structure) and communication structure interrelate. For example, future
studies could examine whether an increase in communication activity
signal that there is a problem in coordination that could be remedied by
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increased communication; and will this affect the sustainability of the
community since it would result in an increased cost for participation
and an information overload on the members [43,50]?

Where prior work that examined development organization in
FLOSS communities took a small-sample approach [64,74,89], social
network approach [16] or mainly examined the communication
structure of FLOSS communities [23], this research adopted a more
generalizable approach to examining FLOSS committal structures and
their implications. We did so as a response to Koch's [44] call for more
studies that are generalizable to a diverse set of FLOSS projects. Future
research could leverage our approach to sampling, estimatingmodularity,
and mining archival data to take a more granular approach to classifying
FLOSS community structures, languages, and application types as ameans
to understand how these FLOSS community features affect participation
and productivity. We also acknowledge opportunities to improve upon
our dependent variable. While commits are important to outcomes, it
might be conceived as being too narrow. A broader measure like the
number of downloads or the number of new users attracted, could
enhance this stream of work.

Finally, we only examined a subset of the potential tradeoffs
between two committal structures. Future research should examine
the implications of different forms of organizing or changing structures
for FLOSS communities. For example, what are the actual organizational
costs for a community to change the committal structure and how
might that change impact contributors and performance over the
transition period? It is important to understand what factors might
contribute to the success or failure of structural change within FLOSS
communities.

10. Conclusion

This study was motivated by a desire to understand how FLOSS
communities' structure influences their ability to develop software.
Drawing on OIPT [33], we conceptualized FLOSS communities as
information processing organizations and identified key contingencies
that influence their ability to commit patches to their codebase. Based
on our analysis of 237 FLOSS communities, we found that our
contingency conditions (e.g., task routineness, uncertainty, and task
interdependency) play an important role in determining the optimal
committal structure for a FLOSS community. FLOSS community
organizers should take these factors into consideration when assigning
commit privileges in order to improve FLOSS community performance.
More importantly, we consolidate the views forwarded by Brooks [12]
and Raymond [81] about software development. While Raymond [81]
posited that task independence is a key assumption for the bazaar
model to thrive, we provide empirical evidence to support this idea,
and identify other factors that come into play. In fact, under certain
conditions, we demonstrate that FLOSS communities are similar to
traditional software development teams and that Brooks' law [12],
as one of the most important classical theories on software project
management, still holds true in the FLOSS context.

Appendix A. Robustness of median split results

To ensure that our results are not caused by the median split [57],
we performed a tertile split on both CUNC and CENT and refit our
interaction model. The results are summarized in Tables A and B
below, which show that our results hold; suggesting that the median
split did not have an impact on our results. With all continuous
variables mean centered, we could interpret the interaction effects
and lower order main effects [3].

In Table 7, we found support for H1, H2, H4, and H5. In Table A, we
can see that TROUT has a positive and significant coefficient, thus
supporting H1. TINT also has a negative and significant coefficient,
providing support for H5. In Table A, we have the results from the
interaction model. The TROUT ∗ CENThi coefficient is positive and
significant suggesting that the TROUT coefficient for the high
centralization group is higher and significantly different than the
coefficient for the reference low centralization group, thus providing
support for H2. The CUNChi ∗ CENT coefficients show limited significance
and are significant and negative, suggesting that groups with high
centralization have a significantly lower coefficient than the reference
group with low centralization, providing some support for H4.

Table A
Main-effect model with tertile split of CENT and CUNC.
Term
 Coefficient
 P-value
 Supports
OUT
 0.287
 0.0001⁎⁎⁎
 H1

UNC_med
 0.13
 0.296

UNChi
 0.103
 0.575

NT
 −0.43
 0.0001⁎⁎⁎
 H5

ENTmed
 0.336
 0.0001⁎⁎⁎
ENThi
 0.857
 0.0001⁎⁎⁎
C
⁎⁎⁎ p b 0.001.
⁎⁎ p b 0.01.
⁎ p b 0.05.

Table B
Interaction model with tertile split of CENT and CUNC.
Term
 Coefficient
 P-Value
 Supports
OUT ∗ CENTmed
 −0.018
 0.315

OUT ∗ CENThi
 0.11
 0.039⁎
 H2
UNCmed ∗ CENTmed
 −0.129
 0.315

UNCmed ∗ CENThi
 0.164
 0.513

UNChi ∗ CENTmed
 −0.336
 0.002⁎⁎
 H4

UNChi ∗ CENThi
 −0.106
 0.096
 H4

NT ∗ CENTmed
 0.347
 0.301

NT ∗ CENThi
 0.241
 0.844

OUT
 0.264
 0.0001⁎⁎⁎
UNC_med
 0.097
 0.75

UNChi
 0.259
 0.006⁎⁎
NT
 −0.642
 0.001⁎⁎⁎
ENTmed
 0.499
 0.0001⁎⁎⁎
ENThi
 0.796
 0.0001⁎⁎⁎
C
⁎⁎⁎ p b 0.001.
⁎⁎ p b 0.01.
⁎ p b 0.05.
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