All-optically controlled fourth- and sixth-order fluorescence processes of Pr3+:YSO
Changbiao Li, Lele Wang, Huaibin Zheng, Huayan Lan, Chengjun Lei, Dan Zhang, Min Xiao, and Yanpeng Zhang

View online: http://dx.doi.org/10.1063/1.4864397
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/5?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Temperature-sensitive fluorescence of NaRETiO4:Pr3+ (RE = Y, Gd) based on the intervalence charge transfer between Pr3+ and Ti4+
J. Appl. Phys. 115, 073511 (2014); 10.1063/1.4865960

Synthesis, characterization and luminescence behaviour of dumbbell-shaped YVO4: Pr3+ hierarchical nanocrystals

Energy transfer in CaYAlO4: Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple

All-optical routing by light storage in a Pr 3+ : Y 2 Si O 5 crystal

Optical spectra and analysis for Pr3+ in SrAl12O19
J. Appl. Phys. 81, 1047 (1997); 10.1063/1.363886
All-optically controlled fourth- and sixth-order fluorescence processes of Pr$^{3+}$:YSO

Changbiao Li, Lele Wang, Huaibin Zheng, Huayan Lan, Chengjun Lei, Dan Zhang, Min Xiao, Yanpeng Zhang

1Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonics Technique, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA and National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

(Received 11 November 2013; accepted 24 January 2014; published online 7 February 2014)

We report all-optically controlled fourth- and sixth-order fluorescence processes with and without splitting, in a heteronuclear-like molecule system of Pr$^{3+}$:YSO both in theory and experiment. We construct the asymptote among Pr$^{3+}$ ions localized at different cation vacancies. By changing the frequency detuning and power of the controlling field, fluorescence signal can be controlled to switch from an enhanced peak to a suppressed dip, and vice versa. Such transition has a potential application to produce all-optical switches. The results can be well explained by a theory model based on the high-order coherent process. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864397]

As well known, rare earth ion doped inorganic crystals can improve or overcome the ultra-fast decoherence processes in solids which prohibit successful implementation of coherent excitation. Compared with atomic gases, atomic coherence-induced effects in solid materials are very attractive for practical applications. Progresses related to atomic coherence in solid-state materials, including enhanced four-wave mixing (FWM) based on atomic coherence, optical velocity reduction and reversible storage of double light pulses, all-optical routing based on optical storage, controllable erasing of optically stored information, light velocity reduction and coherent storage, and electromagnetically induced transparency (EIT) in solid materials, have provided bases for potential applications. Meanwhile, the fluorescence spectrum offers an effective method to investigate the lifetime of population and the excitation process. To realize practical applications, such processes are required to be controlled reliably.

In this paper, we theoretically and experimentally show all-optically controlled fluorescence process in a heteronuclear-like molecule system of Pr$^{3+}$:YSO. Two sets of fluorescence signals, with and without splitting, are chosen to be controlled objects. By changing the detuning and power of the controlling field, desirably modulated results of fluorescence signal can be obtained, such as the switch between the enhanced peak and suppressed dip, which has a potential application in all-optical switch fabrication. Considering the dressing effects of both coupling fields associating with their excitation competition on the particles of ground state, a theory model based on the high-order coherent process is developed to explain these results.

To implement current experiment, the sample is held at 77 K in a cryostat (CFM-102). Figure 1(a) shows the simplified energy-level diagram of 0.05% rare-earth Pr$^{3+}$ doped Y$_2$SiO$_5$ (Pr$^{3+}$:YSO) crystal. We confine ourselves to a detail analysis of the triplet energy level 3H$_4$ and singlet energy-level 1D$_2$ in the current work, since it is easy to identify them reliably by investigating the optical spectrum of the Pr$^{3+}$ ions. The Pr$^{3+}$ impurity ions occupy two nonequivalent cation sites (sites I and II, respectively), in the YSO crystal lattice, which can be identified by their spectra (see Fig. 1(e)). The energy level of site I is labeled by a Greek letter without asterisk and the one for site II with an asterisk. However, under the action of crystal field of YSO, the interaction (i.e., the van der Waals interaction) between Pr$^{3+}$ ions localized at different cation vacancies can happen, so one can treat the two ions as a heteronuclear-like molecule.

The energy level shifts of the ground states (δ_0 and δ_0^*) of site I and site II induced by the van der Waals interaction, can be calculated by $\Delta_E = -\Sigma(C_nR^n)/h$ ($n = 6, 8, 10, 12, 13, 14$), respectively, where $\Sigma(C_nR^n)$ represent the van der Waals interactions of states H-H'. The expressions for states D-D have the similar form. Note that the ground state $|0\rangle$ of such heteronuclear-like molecule is constructed by δ_0 and δ_0^*, while $|1\rangle$ (γ_0 and γ_0^*) is from site I and $|2\rangle$ (γ_1^* and γ_1^*) from site II as shown in Fig. 1(b). Considering the two nonequivalent cation sites, we can construct a V-type three-level system ($|0\rangle \leftrightarrow |1\rangle \leftrightarrow |2\rangle$) (see Fig. 1(c)). Two tunable dye lasers (with a 0.04 cm$^{-1}$ linewidth) pumped by an injection locked single-mode Nd:YAG laser (Continuum Powerlite DLS 9010, 10 Hz repetition rate, 5 ns pulse width) are used to generate the pumping fields $E_1(\omega_1, \Delta_1)$ and $E_2(\omega_2, \Delta_2)$ with frequency detunings defined as $\Delta_1 = \Delta_{0} + \Delta_E$ and $\Delta_2 = \Delta_{0} + \Delta_E$, respectively, where $\Delta_{0} = \omega_{0m} - \omega_{0}$ ($i = 1, 2$) and ω_{0m} denotes the corresponding transition frequency. E_1 drives the transition $|0\rangle \leftrightarrow |1\rangle$, and then $|1\rangle$ emits fluorescence signal FL1. E_2, that is used to be the control light, counterpropagates with E_1 through the sample (see Fig. 1(c)) and is coupled to $|0\rangle \leftrightarrow |2\rangle$ to generate fluorescence signal FL2, as shown in Fig. 1(a). The controlled results are monitored by two photomultiplier tubes with a fast gated integrator.

Theoretically, the intensity of the fluorescence signal is proportional to the diagonal density matrix elements. In current system, with E_1 (E_2) on, via two mutually conjugate

Authors to whom correspondence should be addressed. Electronic addresses: mxiao@uark.edu and ypzhang@mail.xjtu.edu.cn
When E of the two perturbation chains. Considering the dressing effect\((\text{obtain with each other. Considering the coherence property of the electric dipole moment between levels } q \text{ and } \Gamma_0)\), the diagonal element of D_{22}, we can obtain $\rho_{11}^{(2)} = -|G_1|^2 / (\Gamma_{11} d_1)$ and $\rho_{12}^{(2)} = -|G_2|^2 / (\Gamma_{11} d_2)$, where $d_1 = \Gamma_{10} + i \Delta_1$, $d_2 = \Gamma_{10} - i \Delta_1$, and Γ_{10} is the Rabi frequency of E_1 with μ_i, the electric dipole moment between levels $|i\rangle$ and $|j\rangle$, and Γ_{ij} is the transverse decay rate. Thus, with all beams on, the corresponding intensity of the total fluorescence signals is $I_{FL} = \rho_{11}^{(2)} + \rho_{12}^{(2)} + \rho_{22}^{(2)}$.

Here, in order to analyze the physical mechanism of the fluorescence spectrum conveniently, we just focus on one of the two perturbation chains. Considering the dressing effect of E_1 (E_2), the diagonal element $\rho_{11}^{(2)}$ ($\rho_{22}^{(2)}$) corresponding to the fluorescence signal FL1 (FL2) is given by

$$\rho_{11}^{(2)} = -|G_1|^2 / [d_1 + |G_1|^2 / \Gamma_{00}] \Gamma_{11} + |G_1|^2 / d_1], \quad (1a)$$

$$\rho_{22}^{(2)} = -|G_2|^2 / [d_2 + |G_2|^2 / \Gamma_{00}] \Gamma_{22} + |G_2|^2 / d_2]. \quad (1b)$$

When E_1 and E_2 are on, processes $\rho_{12}^{(2)}$ and $\rho_{22}^{(2)}$ can interplay with each other. Considering the coherence property of the system as mentioned above, the two fluorescence processes can be unified by the fourth-order coherence process as following:

$$\rho_{11}^{(4)} = \frac{|G_1|^2}{d_1 + |G_1|^2 / \Gamma_{00} + |G_1|^2 / \Gamma_{11} + |G_1|^2 / d_1 + |G_2|^2 / d_2} \times \frac{|G_2|^2}{d_2 + |G_2|^2 / \Gamma_{00} + |G_2|^2 / \Gamma_{22} + |G_2|^2 / d_2]} \Gamma_{11} + |G_1|^2 / d_1 + |G_2|^2 / d_2]. \quad (2a)$$

The dressing effect of E_2 on level $|1\rangle$ is reflected by $|G_2|^2 / \Gamma_{00}$. The dressing effects of E_1 and E_2 on non-resonant
fluorescence background is reflected by $\Gamma_{11} + |G_1|^2/d_1 + |G_2|^2/d_2$.

To demonstrate the validity of the V-type three-level configuration, the modulated FL1 signal is investigated by tuning the frequency of E_2 into the transition between $|0\rangle \leftrightarrow |2\rangle$. The curve with upper triangles in Fig. 1(f) shows the modulated result when E_2 is open, which has the similar profile as discussed above with two-level system. That is, the raised baseline of FL1 is due to the fluorescence signal radiated from level $|2\rangle$ excited by E_2, and the peak of FL1 is split by the dressing effect of E_2 on level $|0\rangle$ as shown in Fig. 1(i). These spectral features can be understood in the picture of the dressed states in V-type three-level system and are well reproduced by the simulation based on Eqs. (2a) and (2b). Therefore, we can conclude that the levels of two sites are coupled by van der Waals interaction via Feshbach resonance and can use the V-type three-level configuration to analyze the observed phenomena.

Figures 2(a) and 2(c) show two sets of the measured fluorescence signal FL1 versus Δ_1 at different Δ_2. The profiles with Lorentzian lineshapes (dash curves in Figs. 2(a) and 2(c)), consisted of the baselines of different signals, are the fluorescence signals FL2 versus Δ_2. The Autler-Towns (AT)-like splitting phenomena do not appear on the FL2 profiles (dash curves), because the dressing effect of E_2 can be neglected due to its low power. However, the ability of excitation competition on the particles of ground state still occurs. For the first case (FL1 with Lorentzian lineshape pumped by lower power of P_1) shown in Fig. 2(a), when Δ_2 is far away from the resonant region, the FL1 signal is not affected. If Δ_2 is close to the resonant point, the baseline of the FL1 signal is raised gradually due to the excitation competition on the particles of ground state between E_1 and E_2, and the intensity of FL1 signal is reduced. If there is only second-order FL signals, FL2 is the baseline when Δ_1 is scanned with different Δ_2, and the FL2 will become stronger with Δ_2 approaching to the resonant point. As E_1 does not change, the dressing effect on FL2 will not change. However, according to the experiment results in Fig. 2(a), we can see that the dressing effect indeed changes. The reason is that there is a fourth-order FL signal in the system, and the FL2 signal is dressed by E_2. And the mutual interactions mentioned above can be well explained by Eq. (2).

Due to the small powers of E_1 and E_2, the dressing effects of E_1 (i.e., the terms $|G_1|^2/d_1$ and $|G_1|^2/d_2$) and E_2 $(|G_2|^2/d_2$ and $|G_2|^2/d_12$) can be neglected in Eq. (2). However, the pump probability of $E_2 (|G_2|^2/T_{00})$ becomes larger and larger as Δ_2 tunes to the resonant point. Therefore, the pump processes are switched between E_1 and E_2. Figure 2(c) shows the modulated results of FL1 signal at different Δ_2 in which the profile of FL1 shows the AT-like splitting caused by the higher P_1. Similarly, the dressing effect of E_2 can be neglected, whereas that of E_1 must be considered. Associating with the excitation competition, one can explain the controlling process well. Based on above analysis, the corresponding theoretical predictions are shown in Figs. 2(b) and 2(d), respectively, which agree well with experimental data.

Next, the control field E_2 is at a higher power level shown in Figs. 2(e)–2(g) in contrast to the case shown in Figs. 2(a)–2(d). Except for the power of E_2, all the other experimental conditions are identical. However, modulated results of the FL1 signal shown in Figs. 2(e) and 2(g) display the difference from the above case. First of all, the spectrum profiles of FL2 (dashed line) exhibit AT-like splitting caused by E_2, whereas the case in lower excitation power of E_2 shows the pure Lorentzian profile (see dashed line in Fig. 2(a)). Therefore, the dressing effect of $E_2 (|G_2|^2/d_2$ and $|G_2|^2/d_12$) cannot be neglected any longer. Second, if Δ_2 is close to the resonant point, the lineshape of the FL1 signal shown in Fig. 2(e) is switched from an emission peak to a suppressed dip, which can attribute to the dressing effect of E_2 described as $|G_2|^2/d_12$ in Eq. (2). Meanwhile, the baseline of the FL1 signal is changed gradually due to the excitation competition on the particles of ground state between $E_1 (|G_1|^2/T_{00})$ and $E_2 (|G_2|^2/T_{00})$. Finally, in the case shown in Fig. 2(g), the measured results are attributed to the combative action of the dressing effects of both E_1 and E_2 associating with the excitation competition between E_1 and E_2. For experimental results shown in Figs. 2(e) and 2(g), the corresponding

![FIG. 2. Fluorescence signal FL1 versus (E_1 pumped by (a) a lower power or (c) a higher power of E_1 is modulated by applying a weak field E_2 at different detuning values of Δ_2. (b) and (d) Corresponding theoretical predictions of (a) and (c), respectively. FL1 signal versus Δ_1 pumped by (e) a lower power or (g) a higher power of E_1 is modulated by applying E_2 at different Δ_2. (f) and (h) Corresponding theoretical predictions. Note that the profiles (dash curve constituted of the baseline of each signal in each panel) are FL2 signal versus Δ_2 in which Figs. 2(a) and 2(c) correspond to the lower excitation power of E_2, while Fig. 2(e) corresponds to the higher excitation power of E_2.](https://scitation.aip.org/termsconditions)
theoretical results are shown in Figs. 2(f) and 2(h), respectively. It is clear to see that experiment and theory agree well with each other.

Now, we focus on the P_2 power dependences of two sets of the FL1 signals (versus Δ_1) on the dressing field E_2 ($\Delta_2 = 0$) as shown in Figs. 3(a)–3(d). Figure 3(a) shows the power control on the FL1 signal pumped by lower power P_1. As P_2 increasing, the intensity of FL1 decreases gradually and even to zero due to the excitation competition by E_2 shown by the raised baselines of FL1. One can find that the FL1 lineshape does not change initially which reveals that the dressing effect of E_2 ($\langle |G_3|^2/|d_{33}| \rangle$) can be neglected. And then the dressing effect of E_2 leads to the AT-like splitting on the FL1 lineshape. Finally, the FL2 signal is dominant and suppressed by the dressing effect of E_1 ($\langle |G_1|^2/|d_{23}| \rangle$). Therefore, such all-optically controlled process can be used as a high contrast switching. For the higher power P_1 case shown in Fig. 3(c), the similar process can be obtained and well explained by considering the dressing effect of E_1. Accordingly, the correspondingly controlled processes in theory are shown in Figs. 3(b) and 3(d), respectively.

Finally, different from above cases, the modulated results of FL1 signal are obtained by scanning Δ_2 at different P_2 as shown in Figs. 3(e)–3(h), which can better pick up the controlled information of FL1. At low power P_1, the normalized FL1 signal is smaller than one (see Fig. 3(e)). On one hand, as P_2 increasing, the power level of FL1 decreases gradually until the dressing effect of E_2 appears. On the other hand, the emission peak of FL2 appears on the FL1 spectrum and increases gradually. Once the dressing effect of E_2 appears, the ability of E_2 excitation competition on particles is weakened, and then the intensity of FL1 recovers. At this moment, the suppressed dip on FL1 can be observed clearly. Therefore, the switch between enhanced peak and suppressed dip is achieved. However, in the case of high P_1, such switch cannot be obtained as shown in Fig. 3(g) in which only the suppressed dip occurs. Such phenomena can be attributed to the influence from both E_1 and E_2, and the theoretical results shown in Fig. 3(h) agree with the experimental data well.

So far, we have shown the all-optically controlled fluorescence process in a heteronuclear-like molecule system of Pr^{3+}:YSO both theoretically and experimentally. Such controlled process can be extended to any multi-level system. Figure 4(a) shows the modulated FL1 signals by opening (a1) self-dressing field E_1 in $|0\rangle \leftrightarrow |1\rangle$, (a2) E_1 and external-dressing field E_2 in $|0\rangle \leftrightarrow |1\rangle \leftrightarrow |2\rangle$, (a3) E_1 and external-dressing field E_2 in $|0\rangle \leftrightarrow |1\rangle \leftrightarrow |3\rangle$, and (a4) E_1, E_2, and E_3 in $|0\rangle \leftrightarrow |1\rangle \leftrightarrow |2\rangle \leftrightarrow |3\rangle$, respectively, in a N-type four-level system as shown in Fig. 4(b). For comparison, the modulated result discussed above in V-type three-level system is shown in Fig. 4(a2). Similarly, the modulated FL1 signal in Λ-type three-level system shown in Fig. 4(a3). There exists four (two pair) conjugate perturbation chains, and the intensity of the FL signal is a summation of solutions of the perturbation chains. For convenience and simplification, we only analyze one of the four perturbation chains, and we obtain the fourth-order coherent process

$$\rho_1^{(4)} = |G_3|^2/|d_1 + |G_3|^2/|d_3 + |G_1|^2/|d_0\rangle \times \left(|d_1 + |G_3|^2/|d_0 + |G_3|^2/|d_3 + |G_3|^2/|d_1 + |G_3|^2/|d_0\rangle \right)^2,$$

where $d_1 = \Gamma_{12} + i\Delta_3$, $d_0 = \Gamma_0 + i(\Delta_3 - \Delta_1)$, and $d_3 = \Gamma_{23} + i(\Delta_3 - \Delta_2)$. In such case, the dressing effect is weaker than the one in V-type, which is due to the nesting dressing $d_1 + |G_3|^2/|d_3$ in Eq. (4). When E_1, E_2, and E_3 in $|0\rangle \leftrightarrow |1\rangle \leftrightarrow |2\rangle \leftrightarrow |3\rangle$ are on simultaneously, a multi-dressed FL1 signal can be obtained as shown in Fig. 4(a4). According to the analysis method used for Fig. 2(a), there must be a six-order FL signal in this four-level atomic system. Such sixth-order coherence process can be written as

$\rho_1^{(6)} = |G_3|^2/|d_1 + |G_3|^2/|d_3 + |G_3|^2/|d_1 + |G_3|^2/|d_0\rangle \times \left(|d_1 + |G_3|^2/|d_0 + |G_3|^2/|d_3 + |G_3|^2/|d_1 + |G_3|^2/|d_0\rangle \right)^2$.
where $d_{23} = \Gamma_{23} + i(\Delta_2 - \Delta_1 + \Delta_3)$ and $A = |G_1|^2/(d_1 + |G_3|^2/d_{30})$. By comparing the Λ-type and V-type three-level systems, the validity of the latter system we constructed is demonstrated.

In summary, we have presented the all-optically controlled fourth- and sixth-order fluorescence processes of Pr$^{3+}$:YSO in a heteronuclear-like molecule system both in theory and experiment. By the comparison between two-level and Λ-type three-level system, the validity of the heteronuclear-like molecule system is demonstrated. Two sets of FL1 signals, with and without splitting dressed by its pump field, are chosen to be controlled objects. By changing the detuning and power of the controlling field, desirably modulated results of FL1 signal can be obtained, such as the switch between the enhanced peak and suppressed dip, which has a potential application to all-optical switch device. Considering the dressing effects of both coupling fields associating with the excitation competition between them on the particles of ground state, a theory model based on the high-order coherent process is developed to explain these results, which agree with the experimental data well.

This work was supported by the 973 Program (2012CB921804), NSFCs (11104214, 61308015, 11104216, 61078002, 61078020, 61108017, and 61205112).