Stable Ordering in Langmuir-Blodgett Films
Dawn Y. Takamoto et al.
Science 293, 1292 (2001);
DOI: 10.1126/science.1060018

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 10, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/293/5533/1292.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2001/08/16/293.5533.1292.DC1.html

This article cites 22 articles, 3 of which can be accessed free:
http://www.sciencemag.org/content/293/5533/1292.full.html#ref-list-1

This article has been cited by 62 article(s) on the ISI Web of Science

This article has been cited by 2 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/293/5533/1292.full.html#related-urls

This article appears in the following subject collections:
Chemistry
http://www.sciencemag.org/cgi/collection/chemistry
when a Ca\(^{2+}\)-free buffer was subsequently flowed through the device. Control experiments carried out with unmodified SiNWs (Fig. 4B) did not exhibit a conductance change when Ca\(^{2+}\) is added and thus demonstrate that the calmodulin receptor is essential for detection. In addition, the observed conductance decrease in modified SiNWs is consistent with expected chemical gating by positive Ca\(^{2+}\), and the estimated dissociation constant, 10\(^{-5}\) to 10\(^{-6}\) M, is consistent with the reported \(K_d\) for calmodulin (27).

References and Notes

15. SiNWs with diameters of either 10 or 20 nm were suspended in ethanol and flow aligned on oxidized Si substrates (1 to 100 nm; 600-nm oxide; Silicon Sense), and contact leads (50 nm Al or Ti) to 100 nm Au) were defined with electron-beam lithography. The separation between contacts was typically 2 to 4 \(\mu\)m.
16. Surface-functionalized SiNW devices were prepared by cleaning in an oxygen plasma (0.35 Torr, 25 W power for 20 s) to remove contaminants, immersion in 1% ethanol solution of APTES (Aldrich) for 20 min. The different pH solutions were made from 10 mM phosphate buffers with 100 mM NaCl. Solutions were flowed through PDMs microchannels (10, 17) (100 to 200-\(\mu\)m width and height) at a flow rate of 0.5 mL/min. The conductance through the solution was a constant (about 10 nS) and less than the signal from the SiNW (about 100 nS).
20. Biotin-modified SiNWs were prepared by depositing a drop (about 20 \(\mu\)L) of phosphate-buffered solution (PBS) (250 \(\mu\)g/mL; pH 7.4) solution of biotinamidocaproyl-labeled bovine serum albumin (Sigma) on SiNWs for 2 hours, followed by a five times rinse with buffer solution. The solutions used to probe biotin-streptavidin binding were 1 mM phosphate buffer (pH 9) with 100 mM NaCl. The biotin–streptavidin binding solution was prepared by adding four equivalents of d-biotin (Sigma) to one equivalent of streptavidin. All the solutions used in biotin and m-antibiotin (Sigma) binding studies were 1 mM phosphate buffer (pH 7) with 5 mM NaCl.
22. In addition, the detection sensitivity can be changed by the doping concentration and should enable single-molecule detection at sufficiently low concentration. As an example, a single charge on the NW surface will be detected if it generates a sufficiently large local potential barrier (>100 meV at room temperature) for electronic motion. Assuming that a single charge is \(\sim 1\) nm away from a 20-nm-diameter NW, the carrier concentration will most likely be lower than the order of \(-1000\) electrons/\(\mu\)m (or a few electrons/\(\mu\)m) for detection, which translates into \(3 \times 10^{10}\) to \(10^{12}\) cm\(^{-3}\).
26. Sequence analysis shows that the binding region of anti-\(\beta\)galectin (IgG1) is positively charged at pH 7 (24). The remaining domains of this large protein are relatively distant from the SiNW and thus should have little effect on SiNW conductance.
28. We thank L. Lauhon, L. Chen, and Q. Cui for helpful discussion and T. Deng for technical assistance. C.M.L. acknowledges support of this work by the Office of Naval Research and the Defense Advanced Projects Research Agency.
29. 21 May 2001; accepted 23 July 2001

Stable Ordering in Langmuir-Blodgett Films
Dawn Y. Takamoto,1 Eray Aydil,1 Joseph A. Zasadzinski,1* Ani T. Ivanova,2 Daniel K. Schwartz,2 Tinglu Yang,3 Paul S. Cremer3

Defects in the layering of Langmuir-Blodgett (LB) films can be eliminated by depositing from the appropriate monolayer phase at the air-water interface. LB films deposited from the hexagonal phase of cadmium arachidate (CdA\(_n\)) at pH 7 spontaneously transform into the bulk soap structure, a centrosymmetric bilayer with an orthorhombic herringbone packing. A large wavelength folding mechanism accelerates the conversion between the two structures, leading to a disruption of the desired layering. At pH > 8.5, though it is more difficult to draw LB films, almost perfect layering is obtained due to the inability to convert from the as-deposited structure to the equilibrium one.

Langmuir-Blodgett films are made by pulling a substrate through a monolayer of amphiphilic molecules at the air-water interface. Under the appropriate conditions, the monolayer is transferred to the substrate (1, 2). Although the LB technique has been used for decades, application of the method has been frustrated by defects ranging from pinholes to larger scale reorganization of the layers (Fig. 1A) (3, 4). We show here that this reorganization is the progression from the as-deposited structure to the thermodynamic equilibrium structure. However, as Fig. 1B shows, the reorganization can be slowed to the point that nearly perfect LB multilayer films can be made by depositing from a different monolayer phase that exists at the air-water interface at pH > 8.5. The high-pH monolayer phase has a more condensed and lower energy lattice structure than the monolayer at pH 8.5.
Monolayer LB films deposited from pH 7 have a short-range hexagonal packing similar to that found at the air-water interface (Fig. 2A) (11, 12). However, LB films with three or more layers condense into an orthorhombic, herringbone packing with long-range, crystalline order (11, 13) (Fig. 2A). The reduction in area per molecule that accompanies this transition to the orthorhombic packing likely leads to the proliferation of pinholes in the deposited films. Corkery pointed out that the lattice parameters and symmetry measured for fatty acid salt LB multilayers were identical with the equilibrium structure of the corresponding bulk metal soaps (14). Hence, even three-layer LB films have evolved to the equilibrium structure under these conditions.

For cadmium and other fatty acid salts, the equilibrium structure is a centrosymmetric bilayer, with one fatty acid molecule on either side of a central metal ion (14). Before deposition, however, the air-water interface constrains the fatty acid salt to be asymmetric—the cadmium ion in the aqueous phase, with both alkane chains on the air side of the interface. The lack of long-range order and the larger area per molecule in the asymmetric monolayer reinforce the idea that the centrosymmetric packing is energetically favored; the asymmetric structure is likely strained and the alkane chains cannot pack efficiently (6, 7). A LB monolayer on a hydrophilic substrate, however, must retain the asymmetry of the air-water interface, which explains the differences observed between LB monolayers and multilayers (15).

The transition between these two configurations—the asymmetric structure enforced by LB deposition and the centrosymmetric structure favored by equilibrium—is the driving force behind LB film reorganization. As soon as three asymmetric monolayers have been deposited on the substrate, a headgroup-to-headgroup interface is formed that facilitates the exchange of ions between fatty acids as illustrated schematically in Fig. 2B. Equally important to the kinetics of the reorganization, the hexagonal packing at the air-water interface can condense into the bulk soap structure by shrinking in the next-nearest-neighbor (NNN) direction with only a negligible expansion in the nearest-neighbor (NN) direction (Fig. 2A). The cylindrical symmetry of the alkane chains in the hexagonal phase is broken on this transformation; there is a regular orientational ordering of the chains in the herringbone packing.

The conversion from the hexagonal structure present at the air-water interface at pH 7 to the equilibrium structure also leads to the large-scale disruption of the layering (Fig. 1A). To show the consequences of the reorganization, we deposited alternating layer LB films of cadmium stearate (CdSt₂,C₁₈ carbon chain) and cadmium lignocerate [CdL₂,C₂₄ carbon chain, deposited at 32°C (16)] at pH 7. The difference in layer thickness between these two fatty acids is easily resolved in AFM images. These films formed multilayer islands and holes with the equilibrium lattice structure (15), as did CdA₂ (Fig. 1A). The roughness of the terraces did not increase during the reorganization, showing that the fatty acids from different layers did not mix at the molecular level. The area of the holes was roughly equal to the area of the multilayer islands, so there was negligible loss of material by solubilization (15).

During every “downstroke” in which the LB films are in the subphase, two asymmetric monolayers are present tail-to-tail (Fig. 3).
One way to proceed to the equilibrium structure is via a large-scale bilayer folding process that leads to a headgroup-headgroup interface. Two possible mechanisms are shown in Fig. 3, “overturning” and “creeping.” In the overturning mechanism, the bilayer folds back on itself and the bottom monolayer is now on top; the bilayer orientation is lost (15, 17). In the creeping mechanism, the bilayer detaches and slides over the remaining bilayer; the orientation of the bilayer is preserved. In both mechanisms, a new headgroup-headgroup interface is formed. This allows the transition between asymmetric and centrosymmetric structures, and a condensation of the hexagonal lattice into the lower energy equilibrium structure.

Figure 3 shows the two possible outcomes of these mechanisms on a reorganized film consisting of alternate layers of CdSt₂ and CdL₂. Table 1 shows the predicted bilayer step heights for the two mechanisms, along with the average value of the step heights measured on LB films with CdSt₂ deposited first, followed by CdL₂; or CdL₂ deposited first, followed by CdSt₂. The measured step heights show that reorganization proceeds by the overturning mechanism. Overturning reorients the deposited layers, which is consistent with x-ray diffraction measurements of alternate layer films that show a partial intermixing of the layers (17, 18).

However, Fig. 1B shows that this reorganization does not occur if the LB films were deposited from a subphase of pH ≥ 8.5. Whereas the film deposited at pH 7 (Fig. 1A) had an overall height variation in excess of 12 nm (about two bilayers), the pH 8.5 film was flat to <1 nm (Fig. 1B). X-ray photoelectron spectroscopy (XPS) of the low-pH and high-pH films showed that the stoichiometry was about 40:1 of carbon to cadmium, confirming that the stoichiometry of both films was CdA₂ (9).

One reason that reorganization is inhibited in monolayers deposited from the higher pH is that the molecules are better ordered. X-ray diffraction by Leveiller et al. (19, 20) showed CdA₂ adopts a pseudo-herringbone orthorhombic lattice (Fig. 2A) with longer ranged order at the higher pH. Lattice energy calculations show that the pseudo-herringbone packing is not as favorable as the herringbone packing; however, the difference in energy is less than that between the hexagonal packing and the equilibrium structure (5, 6). More important, as shown in Fig. 2B, the unit cell of the pseudo-herringbone packing is significantly smaller in the NN direction than the hexagonal or herringbone packing. In order for the high-pH pseudo-herringbone lattice to convert to the equilibrium structure, the lattice must expand in the NN direction to allow for rotation of the chain axes, which effectively takes the molecules through the hexagonal packing on the way to condensing into the equilibrium structure (Fig. 2A). This expansion likely requires an activation energy; hence, the kinetics of the transition should be significantly slower, as is observed.

The consequences of this inhibited transition are shown in the molecular-resolution lattice images of the LB films shown in Fig. 4. An AFM image (Fig. 4A) of a five-layer film deposited at pH 7 shows that the as-deposited hexagonal structure has completely converted into the equilibrium herringbone structure. AFM and electron diffraction show that the typical grain size in CdA₂ films deposited at pH 7 is 10 to 100 μm (8, 12, 21). Figure 4B shows a five-layer film of CdA₂ deposited at pH 8.8. These films consist of many 5- to 10-nm-sized crystallites. Fourier transforms from various crystallites reveal lattice spacings corresponding to all three packings shown in Fig. 2A: (i) the equilibrium herringbone structure, (ii) the hexagonal packing, and (iii) the as-deposited pseudo-herringbone packing. The conversion between as-deposited and equilibrium lattice structure is inhibited by deposition from the high-pH subphase. Attenuated total reflection–Fourier transform infra-red (ATR-FTIR) spectra of five-layer CdA₂ films deposited onto germanium ATR crystals at high and low pH.

Table 1. Comparisons of predicted and actual island heights for two alternating layer films allowed to reorganize.

<table>
<thead>
<tr>
<th>Film</th>
<th>Predicted</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overturning</td>
<td>Creeping</td>
</tr>
<tr>
<td>(1) CdSt₂/L₂</td>
<td>6.8</td>
<td>5.9</td>
</tr>
<tr>
<td>(2) CdL₂/CdSt₂</td>
<td>5.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Fig. 3. Overturning (top) and creeping (bottom) mechanisms of reorganization. After any two layers are deposited, the top bilayer consists of two opposed asymmetric monolayers (left). The black molecules represent CdL₂ and the gray molecules CdSt₂. When the films overturn (top), the interior bilayer forms a headgroup-headgroup interface between two CdSt₂ monolayers. In the creeping mechanism, the alternate layering is preserved. The headgroup-headgroup asymmetric interface can transform to the centrosymmetric bilayer as in Fig. 2B. The expected step heights are significantly different for the two mechanisms and can be easily resolved by AFM (Table 1).

Fig. 4. Molecular-resolution AFM images (14 nm by 14 nm) of five-layer CdA₂ films on silicon. (A) Film deposited at pH 7 shows only one crystal grain with measured lattice parameters, d₅₀ = 0.375 ± 0.004 nm and d₁₇ = 0.406 ± 0.004 nm, consistent with the herringbone structure (Fig. 2A). AFM and electron diffraction show that a typical grain size at pH 7 is of order 10 to 100 μm. (B) Film deposited at pH 8.8 shows numerous small crystallites. The nanocrystal labeled 1 has the herringbone packing, with measured d₅₀ = 0.375 nm and d₁₀ = 0.406 nm (12). The nanocrystal labeled 2 is hexagonal, with d spacings of 0.411, 0.416, and 0.412 nm, which compare well to the expected d₅₀ = d₁₀ = 0.41 nm for the hexagonal phase (12). Nanocrystal 3 has the pseudo-herringbone packing with measured d₅₀ = 0.391 nm and d₁₀ = 0.415 nm; the expected d₅₀ = 0.393 nm and d₁₀ = 0.415 nm (5, 6). The error in the measured d spacings of these nanocrystals is about ± 0.01 nm due to the small size of the nanocrystals.
Fig. 5. SFG spectra of the CH (2750 to 3000 cm$^{-1}$) and OH stretch region (3000 to 3800 cm$^{-1}$) for monolayers of cadmium arachidate on 0.6 mM cadmium chloride subphases buffered at pH 6.6 (closed circles) and pH 8.8 (open circles). The theory and experimental setup of SFG have been described in detail elsewhere (25–27). The strong signal intensity at both pH values from the CH2 symmetric stretch (at 2870 cm$^{-1}$) and its Fermi resonance (at 2945 cm$^{-1}$) without a CH2 stretch indicate that the chains are in the all-trans configuration. The difference in absolute CH region intensities between low and high pH is the result of constructive interference between the water peak at 3200 cm$^{-1}$ and these peaks. The peak near 3200 cm$^{-1}$ is attributed to a high degree of hydrogen bond order (ice-like structure) of the water layer adjacent to the interface (25–27). The second, smaller peak near 3400 cm$^{-1}$ is attributed to a more liquid-like arrangement of the water (25–27). The intensity of both the water-like and ice-like peaks fall to almost immeasurable values in the low pH case showing that the water layer is indeed much more poorly ordered. All data were taken with a 22-ps Nd:YAG (Nd:ytrrium-aluminum-garnet) laser using the SSP polarization combination.

Fig. 6. AFM images (12 μm by 12 μm) of CdA$_2$ deposited and equilibrated in different pH subphases. (A) First, two layers were deposited at pH 7, then the film was transferred to a pH 8.8 subphase. The film reorganized, which is what we expect for films deposited from the hexagonal structure present at the air-water interface at pH 7. (B) First, two layers were deposited at pH 8.8, then the film was transferred to a pH 7 subphase. The film did not reorganize, which is what we expect at high pH.