Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution

Bernie O'Hare, Alan J. Benesi, Scott A. Showalter

Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA

Abstract

Exclusively heteronuclear 13C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor 1H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the 1H resonances unassigned. Here we report two novel 13C-detected NMR experiments which incorporate a 1H chemical shift evolution period followed by 13C-TOCSY mixing for aliphatic 1H resonance assignment without reliance on 1H detection.

1. Introduction

Recent advances in cryogenic probe technology, most notably the incorporation of cryogenically cooled carbon coils, have resulted in the re-emergence of 13C-direct detection spectroscopy as a tool for studying proteins in solution [1]. An extensive suite of so called “protonless” 2D and 3D NMR experiments now exist for complete heteronuclear (13C and 15N only) chemical shift assignment of proteins, based primarily on experiments detected through the backbone carbonyl carbon (13C$_{\text{O}}$) [2]. Sequential backbone connectivity is most readily determined in protonless spectroscopy by experiments which correlate the inter-residue 13C$_{\text{O}}^{-}/$ intra-residue (1H$_{\text{O}}$) 13C$_{\text{C}}$, in analogy to familiar residue-hopping in 1H-detected triple resonance NMR experiments [3]. One key feature of these protonless spectra, preserved in the novel experiments presented here, is the incorporation of “virtual decoupling” to eliminate the effects of 13C$_{\text{O}}^{-}/$ 13C$_{\text{C}}$ scalar coupling in the direct-detect dimension [1]. This feature provides a signal enhancement great enough to make these experiments practical.

In addition to the protonless 13C-direct detection experiments, sporadic attempts have been made to combine indirectly recorded proton chemical shift dimensions with direct 13C observation. An “out-and-stay” version of the HACACO, correlating the 1H$_{\text{F}}$, 13C$_{\text{C}}$, and 13C$_{\text{O}}$, works reasonably well, but suffers from splitting by the 13C$_{\text{C}}$-13C$_{\text{O}}$ scalar coupling in the direct-detect dimension [4]. A second multiple-quantum variant of the HACACO, reported along with a protocol for post-processing of the spectrum to “decouple” the direct-detect dimension, circumvents this problem and restores full resolution [5]. Most recently, 2D 13C-start 13C-detected TOCSY spectra were extended with a third 1H dimension, yielding side chain 1H resonance information in a 13C-aliphatic detection format [6].

13C detected spectra of paramagnetic, very large, or intrinsically disordered proteins (IDPs) offer serious advantages in resolution and, potentially, sensitivity over more conventional 1H-amide detected spectra because the unfavorable relaxation properties of the 1H nucleus can be partially or entirely avoided. NMR spectroscopy is a uniquely powerful tool for studying the dynamic structural ensembles of IDPs, which have emerged as a critical class of functionally diverse biomolecules [7,8]. Even so, study of IDPs by NMR has been limited by the extremely poor 1H-amide chemical shift dispersion typically observed. Direct detection through the 13C, which tends to retain greater resonance dispersion in IDPs, led to the observation that protonless NMR is a valuable tool for the study of these molecules [9]. For IDPs, unlike the paramagnetic proteins for which modern protonless experiments were originally developed, there is no reason to avoid (1) the gain in sensitivity arising from utilizing the proton equilibrium polarization at the beginning of an experiment or (2) the recording of 1H chemical shifts in an indirect evolution period for further use. Underscoring the timely nature of this point, the use of proton polarization to enhance sensitivity of protonless spectroscopy has just been reported [10]. As yet, no effort to incorporate 1H chemical shift evolution into modern 13C detected experiments, yielding carbon-detected “triple resonance” spectroscopy, has been reported. Proton assignment in amide detected spectroscopy is often achieved through a combination of the H(CC)CONH [11,12] and the 15N-TOCSY-HSQC.
Here we report two novel pulse sequences developed from the CCCO and CCCON [13] to accomplish complete aliphatic \(^1\)H resonance assignment. The utility of these experiments, which we name the H(CC)CO–IPAP and H(CC)CON–IPAP, is demonstrated with the 83 residue intrinsically disordered C-terminal acidic region of FCP1 [14].

2. Results and discussion

A variety of protonless experiments have been developed for amino acid type determination and the generation of complete heteronuclear assignments [1]. Our experiments, based on the pulse sequences shown in Fig. 1, complement these by incorporating a \(^1\)H chemical shift evolution in place of one indirect \(^{13}\)C evolution period in two of the most commonly employed \(^{13}\)C-carbonyl detected experiments. The H(CC)CO–IPAP (Fig. 1A) yields \(H^{t_0}N^{t_1}C^{t_2}C^{t_3}_i\) and \(H^aN^{t_1}C^{t_2}C^{t_3}_i\) correlations that, coupled with acquisition of the purely heteronuclear CCCO–IPAP, generate complete resonance assignment of the aliphatic side chains. More directly analogous to the heteronuclear CCCO–IPAP, generate complete resonance assignment. The utility of these experiments, which we name the H(CC)CO–IPAP and H(CC)CON–IPAP, is demonstrated with the 83 residue intrinsically disordered C-terminal acidic region of FCP1 [14].

The desire to study paramagnetic metalloenzymes motivated development of the current generation of \(^{13}\)C-direct detect experiments [15]. As such, these experiments have been kept entirely protonless in order to prevent efficient relaxation of the desired signal by proximity to the paramagnetic centers. These experiments have also seen rapid adoption for investigations of intrinsically disordered or chemically unfolded proteins [9,16]. Their utility is due to overcoming the lack of dispersion in the \(^1\)H–amide resonances, which has long been one of the fundamental spectral limitations impeding NMR investigation of IDPs. The ability to assign and work with purely heteronuclear experiments comes at the cost of losing all proton derived information. The experiments reported here restore \(^1\)H resonance evolution periods to the \(^{13}\)C detected spectra, thus retaining the advantages of \(^{13}\)C detection without loss of \(^1\)H information. 2D \(^1\)H–\(^{13}\)C planes from the H(CC)CO–IPAP and H(CC)CON–IPAP spectra collected on a 1 mM sample of the intrinsically disordered C-terminal acidic region of FCP1 are shown in Fig. 2. The extreme degeneracy of several important \(^1\)H resonances can be seen in the regions circled for the Leu \(^1\)H (solid), Ala \(^1\)H (dashed), and Pro \(^1\)H (dotted). However, the observed chemical shift dispersion of the \(^{13}\)C dimension is sufficient to allow satisfactory resolution of nearly all spin systems in the full 3D versions of the spectra.

Use of the new \(^1\)H incorporated, \(^{13}\)C detected experiments for amino acid type verification and complete \(^1\)H resonance assignment is illustrated in Fig. 3 for Leu 953, Pro 902, and Ala 901 of FCP1. Representative strips are shown from the H(CC)CO–IPAP and H(CC)CON–IPAP; as well as the \(^1\)H-amide detected H(CC)CONH and \(^1\)H-TOCSY-HSQC of the same sample. Leu 953 (Fig. 3A) was selected for illustration because it is one of the very few residues well enough resolved in the \(^1\)H,\(^{13}\)N-HSQC to allow display of reasonably clear strips from the comparison \(^1\)H detected spectra. All of the expected correlations, based on \(^1\)H detected strips, are found in the \(^{13}\)C detected spectra recorded with the pulse programs presented here. Also, the sharpened \(^{13}\)C line width, relative to the \(^1\)H-
amide line width, is clearly seen. An additional advantage of the
13C detected experiments is that proline correlations are present
in the H(CC)CON–IPAP, unlike the H(CC)CONH in which they are
absent. For example, the 1H resonances of Pro 902 are clearly
assignable (Fig. 3B) from the H(CC)CON–IPAP. Most notably, pro-
line residues do not disrupt the walk along the backbone, which
is important for proline rich IDPs, as illustrated for Ala 901 that
correlates with the backbone 15N of Pro 902 (Fig. 3B), making proper
placement of these residues into the primary sequence of FCP1
trivial. These factors, coupled with the increased residual chemical
shift dispersion previously mentioned, have allowed nearly complete
resonance assignment of FCP1, which was not possible based on 1H-amide detected spectroscopy alone [17].

3. Conclusions

Recently reported protonless 13C-direct detected experiments,
acquired on spectrometers equipped with cryogenic probes opti-
mized for 13C detection, have emerged as valuable tools for study-
ing paramagnetic or intrinsically disordered proteins. Here, we
have extended the existing suite of protonless 13C-direct detected
experiments through introduction of indirect 1H evolution periods
to produce “triple resonance” 13C-direct detected spectra. The
completeness of aliphatic 1H spin system detection by these spec-
tra is comparable to that which is observed for the handful of
residues well resolved in 1H-amide detected spectra of the intrin-
sically disordered protein FCP1, as demonstrated for Leu 953. Addi-
tion of the H(CC)CO–IPAP, H(CC)CON–IPAP experiments to the
standard set of protonless experiments allows nearly complete
assignment of the 1H, 13C, and 15N resonances of intrinsically disor-
dered proteins without the need for analysis of the poorly dis-
pered 1H-amide detected experiments.

4. Experimental

The 15N/13C human FCP1 sample was prepared and purified as
previously reported [17]. The sample was 1 mM FCP1 in 20 mM so-
dium phosphate, pH 7.0, 100 mM NaCl, 0.02% (w/v) NaN$_3$, 10% (v/v)
D$_2$O. All experiments were recorded on an 11.7 T Bruker AVANCE-3
spectrometer operating at 500.13 MHz 1H frequency equipped
with a TCI cryoprobe, allowing high sensitivity acquisition of
13C-direct detected spectra. All spectra were recorded at 298 K.
Reported spectra were collected with eight scans and, after re-
combination of the in-phase and anti-phase sub-spectra yielded
data matrices of 1282/C2 = 642/C2 = 1024 data points for the H(CC)CON–
IPAP and 642/C2 = 1282/C2 = 1024 data points for the H(CC)CO–IPAP spec-
trum. Total acquisition time was approximately two days per 3D
experiment.

The H(CC)CO–IPAP and H(CC)CON–IPAP spectra were collected
using the pulse sequences shown in Fig. 1. In each pulse sequence,
1H magnetization evolves in a semi-constant time period prior to
the first 90° carbon pulse. This period simultaneously incorporates
the T_1 evolution period and INEPT transfer of polarization from the
1H nuclei to produce antiphase magnetization with respect to the
directly attached 13C nuclei [12,18]. Following the first
90° carbon pulse, the 1H–13C couplings are allowed to refocus dur-
ing a short refocusing delay D_2. From this point forward, the pulse
sequences bear significant resemblance to their protonless forms
and the reader is referred to the original reports for further discus-
sion [2,13].

Narrow and wide rectangular pulses correspond to 90° and 180°
hard pulses. Pulse widths were 10.27 and 31 l for hard 1H and 15N
90° pulses, respectively. Narrow and wide black filled shapes cor-
respond to 90° (Q3; duration 384 µs) and 180° (Q5; duration 307 µs) band selective 13C pulses [19]. The grey filled shapes on
13C13C13 correspond to a 180° (Q3; duration 1 ms) band
selective inversion pulse and an adiabatic inversion pulse (smoothed Chirp, 500 µs, sweep width 60 kHz, 20% smoothing

![Fig. 2. 2D 1H–13C planes from the (A) H(CC)CO–IPAP (B) H(CC)CON–IPAP. Spectra were acquired on the intrinsically disordered C-terminus of FCP1 with an 11.7 T spectrometer equipped with a TCI cryoprobe for 13C detection. As an illustration of the resolution gained through 13C detection, the Leu 1H, Ala 1H, and Pro 1H resonances are enclosed in solid, dashed, and dotted lines, respectively. Three resonances featured in Fig. 3 are indicated as * = L953 1H, † = A901 1H, and ‡ = P902 1H.](image-url)
respectively. Pulsed field gradients (PFG) are also indicated by shapes. The 1H and 15N carriers were placed at 4.7 and 124 ppm, respectively. The 13C carrier was changed at the positions indicated by vertical arrows to 13C\(_a\) = 39 ppm, 13C\(_b\) = 54 ppm, and 13C\(_0\) = 172 ppm. Sweep widths were set to 1H = 16 ppm, 13C\(_a\) = 40 ppm, 13C\(_b\) = 24 ppm, and 15N = 40 ppm. The FLOPSY-16 13C spin lock was applied with a 10 kHz field strength for 22 ms. Composite pulse decoupling during acquisition and as indicated during the pulse programs is achieved with the WALTZ-16 (1H) and GARP-4 (15N) sequences applied at 3.1 and 1.25 kHz field strength, respectively. Experiments were acquired with recycle delays of 1.0 s and acquisition times of 170 ms. Further delay values and phase cycle information are provided in the legend to Fig. 1.

Acknowledgment

This work was supported by start-up funds from the Pennsylvania State University to SAS.

References

