
Lecture 1
Consumer Choice

We’ll begin with a few remarks about convexity. Convexity assumptions are
ubiquitous in economics, usually thought of as summarizing some form of the
“law of diminishing returns”.

Definition 1.1. Let V be a vector space (it will usually be finite dimensional for
us). A subset S ⊆ V is convex if whenever v1, . . . , vn ∈ S, λ1, . . . , λn ∈ R with
λi > 0 and

∑
λi = 1, we have

∑
λivi ∈ S. A function f : V → R is convex if

the set {(v, λ) : f(v) > λ} ⊆ V ⊕ R is convex. The function f is concave if −f
is convex.

Let S ⊆ V be convex with nonempty interior (we assume that V is a LCTVS,
in the infinite dimensional case). Let x ∈ ∂S be a boundary point of S. Then
the Hahn-Banach theorem provides a continuous linear functional φ ∈ V ∗ such
that φ(x) = 1 and such that S is contained entirely in one of the half-spaces
{v : φ(v) 6 1} or {v : φ(v) > 1}. This is called a support hyperplane for S
at x. If ∂S is smooth at x then a support hyperplane is unique and is equal to
the tangent hyperplane in the usual sense. In general support hyperplanes are not
unique (e.g. consider a cube).

Let f be a smooth function on V . The Hessian of f is the symmetric bilinear
form V ⊗ V → R defined by the matrix of second derivatives.

Proposition 1.2. A smooth function f is convex if and only if the Hessian D2f(x)
is negative semidefinite for each x ∈ V .

Proof. Begin by considering the 1-dimensional case.

Proposition 1.3. Let f : V → R be a concave function. Then the sets {v ∈ V :
f(v) > λ} (for fixed λ) are convex.

Economics is about rational decision-making constrained by budgets. Imagine
that you are a consumer wandering through Wal-Mart. You have a certain sum of
money in your pocket, and you want to spend it as “efficiently” as possible. How
do you do this?

Let V = RN , where N is the number of different things that Wal-Mart sells.
Each of these things is called a commodity, and a point of V (which might repre-
sent the contents of your shopping cart as you head to the checkout) is a bundle of
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commodities or just a bundle. V is in fact an ordered vector space, with positive
cone given by {x : xi > 0∀i}, and usually we require that a bundle lie in the
positive cone (Wal-Mart won’t allow you to trade 10,000 rolls of toilet paper for
a flatscreen TV). Notice that our assumption that each point in V + is a bundle
means we are assuming that all goods are infinitely divisible. In reality this is of
course false (you can’t buy half a TV) but it may be a usable approximation when
large numbers of similar consumers are involved.

A price vector is an element of (the positive cone of) the dual space V ∗. A
price therefore assigns a positive real number to every bundle, which is called the
cost of the bundle. Most shoppers operate under a budget constraint: they must
choose their preferred bundle of commodities subject to p(x) 6 R, where p is
some fixed price vector and R is their total budget.

How is this choice made? 19th-century utilitarian philosophers argued that the
consumer derives utility from his/her purchases, and that the consumer will act to
maximize total utility within budget constraints. What kind of thing should utility
be? Imagine that we purchase just one kind of good (ie V is 1-dimensional). It
is (perhaps) natural to suppose that the utility U(x) is an increasing function of x
(the more x we have, the more satisfying it is) but that it is concave (this is the
“law of diminishing returns”). If the total utility of a bundle were the sum of the
utilities of the component commodities, the total utility function would be defined
on V +, increasing, and concave. We’ll generally make these assumptions about
utility — of course there are other ways for such functions to arise as well as from
the sums of componentwise utilities of individual commodities. Normally assume
also that U is strictly convex on the strictly positive cone of V .

Remark 1.4. Utility is not observable (there is no utility-meter you can bolt to
my skull, to measure how much utility I’m getting out of a given bundle.) This
is a fundamental problem. One can attempt to evade this by paying attention not
to utility itself but to the foliation induced on V + by the level sets of U . These
level sets are called indifference hypersurfaces, and the foliation is the indifference
foliation — the idea being that if two bundles lie on the same indifference surface,
the consumer will not prefer either one to the other. All predictions of the theory
should be the same for two utility functions having the same indifference foliation.
This amounts to an invariance under change of coordinates in utility-space.

Remarks on “revealed preference”.

There are now two types of extremum problems that we can consider. Let a
price-vector p be given

(a) The consumer may be given a budgetR, and may try to maximize utility U(x)
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subject to the budget constraint px 6 R. Let the (unique) point maximizing
utility (i.e. preferred to any other feasible point) be denoted ζ(p,R).

(b) The consumer may specify a level of utility S and may attempt to minimize
the cost px subject to the utility constraint U(x) > S. Let the (unique) point
minimizing cost be denoted ξ(p, S).

In either of these situations the extreme point x0 has the property that the
budget hyperplane px = R passing through x0 is tangent to the indifference hy-
persurface U(x) = S passing through x0. To put this another way, the differential
dU(x0) : V → R is a multiple λp of the price vector. (If one formulates this as a
constrained optimization problem in the manner of Calculus III, λ is a Lagrange
multiplier.)

Traditionally this is expressed in the following way. The quantity ∂U/∂xi is
called the marginal utility of commodity i; one obtains (approximately) ε∂U/∂xi
units of extra utility from ε extra units of commodity i, the quantities of the other
commodities being held fixed. The quantity

1

pi

∂U

∂xi

is then the marginal utility of the last dollar spent on commodity i. The condition
dU = λp is expressed in coordinate form by saying that all these marginal utilities
are equal. In other words, a consumer who maximizes utility for a given budget (or
who minimizes budget for a given utility) will adjust the expenditure on different
commodities until the marginal utility of the last dollar spent on each commodity
is the same. (Note that this condition is invariant under change of coordinates in
utility-space.)

We focus attention for a moment on problem (b) above, that of minimizing the
cost of a fixed amount S of utility. Let us consider the effect of varying the price
p. For fixed S we now obtain a function p 7→ ξ(p, S), V ∗ → V . The derivative of
this function is a linear map σ : V ∗ → V , i.e. a bilinear form on V ∗ (or an element
of V ⊗ V ).

Theorem 1.5. (Substitution theorem) The bilinear form σ thus defined (called the
substitution form) is symmetric and negative (semi)definite.

Notice that σ cannot be definite! This follows from the obvious fact that
ξ(p, S) = ξ(λp, S) for any positive constant λ (the “veil of money”). We should
really regard σ as a function defined on the Grassmannian of oriented 1-planes in
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V ∗ (aka the unit sphere, if you want to fix a metric) and the domain of σ as a linear
map is the tangent plane to this Grassmannian, which has dimension N − 1. On
the other hand, the range of σ also lies in an N −1-dimensional subspace, namely
the tangent plane to the indifference surface. The correct notion of nondegeneracy
would be to say that this linear map is invertible. See the remark 1.6 below.)

Proof. We fix S and regard ξ as a function of p. Let R(p) = pξ(p), the minimum
cost of a bundle of utility S when prices are p. Then

dR = pdξ + dp · ξ = dp · ξ

because pdξ = 0 since dξ lies in the tangent plane to the surface U = S. It follows
that

dp ∧ dξ = 0

considered as a 2-form on V ∗. But this 2-form is just the antisymmetrization of
σ(dp), so σ is symmetric.

To see that it is negative let p0, p1 be two points of V ∗ and ξ0, ξ1 the corre-
sponding values of ξ. By the minimization properties we have

p0ξ1 > p0ξ0, p1ξ0 > p1ξ1.

Hence
(p0 − p1)(ξ0 − ξ1) 6 0.

If p1−p0 = δp this expression is (to first order) σ(δp, δp). Thus σ is negative.

Here is the economic interpretation. For a fixed value of p, σ is a square
matrix whose entries σij give the change in the amount of the i’th good purchased
when the j’th price is changed infinitesimally. The symmetry of this matrix is a
nontrivial prediction of the theory.

The diagonal elements of a negative matrix, σii, must be negative. Interpre-
tation: if the price of a good increases, less of it is bought. (But note that this is
under the unworldly and unobservable condition of constant utility.)

The off-diagonal elements σij may have either sign. If the sign is positive,
then goods i and j are substitutes (if coffee becomes more expensive, I buy more
tea). If the sign is negative then the goods are complements (if coffee becomes
more expensive, I buy less cream). Exercise: If there are only two goods, show
that they must be substitutes.
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Remark 1.6. This analysis is related to some very classical topics in differential
geometry. Let M be an embedded hypersurface in RN (e.g. an indifference sur-
face). Let n be a fixed unit normal vector field to M . For vector fields X, Y
tangent to M one defines the second fundamental form

II(X, Y ) = 〈∇X , Y, n〉 = −〈Y,∇Xn〉.

A calculation shows that II is tensorial (it depends only on the values of X and
Y at the given point) and symmetric.

Now we want to analyze the more realistic situation where maximization takes
place subject to a budget constraint rather than a utility constraint. In the first in-
stance we can consider a fixed price vector p and investigate ζ(p,R) as a function
of the total budget R. (This function is called an Engel curve.) Intuition may at
suggest that ζ(p,R), or more exactly each of its components, is likely to be an
increasing function of R (as my budget increases, I buy more champagne). But
this is not invariably the case (as my budget increases, I buy less box wine — I’m
drinking champagne instead!) If ζj(p,R) is a decreasing function of R (in some
range), one says that j is an inferior good (in that range).

Now consider the general case where ζ varies as a function both of p and R.
Consider then ζ : Ω = V ∗ × R → V and, as above, we are interested in studying
small changes, i.e. in dζ which is a V -valued 1-form on Ω. Let us use the notation
σ for the substitution form, which is a V ⊗ V -valued function on Ω (a tensor
field), and let α denote the derivative of ζ with respect to R for fixed prices (also
a function on Ω), which is a V -valued function. We have

Proposition 1.7. On Ω one has

dζ = σ · dp+ α(dR− ζ · dp).

(Here p,R are the coordinate functions on V ∗, R respectively, so that dp is a V ∗-
valued 1-form and dR is an ordinary 1-form. The dot denotes contraction of V
with V ∗.)

This is called the Slutsky equation. The interpretation is that the change in the
optimal bundle arising from a change of prices has two components: the first (the
substitution effect) arises from exchanging goods at constant utility (the previous
discussion) and the second (the income effect or wealth effect) arises because the
change in prices may change the amount of utility available.
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Proof. This is an identity for 1-forms, i.e. linear functionals on V ∗ ⊕ R. We
check it on a basis. When applied to basis vectors of the form (0, Y ), dp = 0
and the equation just follows from the definition of α. On the other hand consider
applying it a basis vector of the form (X, Y ) that is tangent to the graph p 7→
pξ(p, S) (that gives the minimum cost of a bundle at constant utility). On this
curve dζ(X, Y ) = σ(X) = σ · dp(X, Y ) (by the substitution theorem), and on
the other hand dR(X, Y ) = ζ(X) = ζ · dp(X, Y ) (as shown in the proof of the
substitution theorem). So the Slutsky equation is verified in this case too. These
two kinds of vectors span V ∗ ⊕ R so we are done.

Can this be interpreted as the Maurer-Cartan equation for a suitable connec-
tion?

Consider now the variation in the amount of a given good (say number 1)
purchased, in terms of its price (total budget being fixed). According to the Slutsky
equation the rate of variation is σ11 − α1ζ1. The first term is negative, in accord
with intuition, but the second term will be positive if the good is inferior. If the
second term is so positive that the sum is positive, the good is called a Giffen good:
the amount purchased by the consumer is an increasing function of the price. It
is questionable whether such things exist in real life. The classic example is to
consider the cheapest and worst of a class of things, such that the class as a whole
is in some sense a necessity of life, but the cheap version is so undesirable that
people would buy the more expensive one if they could afford it. For instance
(quoting Marshall’s principles of economics, 1895, which introduces the idea):

As Mr.Giffen has pointed out, a rise in the price of bread makes so
large a drain on the resources of the poorer labouring families and
raises so much the marginal utility of money to them, that they are
forced to curtail their consumption of meat and the more expensive
farinaceous foods: and, bread being still the cheapest food which they
can get and will take, they consume more, and not less of it.

In “Inferior Goods, Giffen Goods, and Shochu” (Baruch and Kannai, 2001),
econometric evidence is presented that in a certain range, shochu (the cheapest
grade of Japanese rice wine) behaves as a Giffen good. A more recent proposal
suggests that it is plausible that under certain circumstances gasoline or other fuels
may behave in this way for some subpopulations. Even if aggregate decreases as
price rises, this does not rule out Giffen-like behavior for certain groups of people.

The mention of populations leads to the following kind of question. Suppose
that instead of one consumer we have a large number of different consumers,
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with different budgets but otherwise identical indifference foliations. To be pre-
cise, let ρ(R) be the density of consumers with budget R (normalized so that∫∞
0
ρ(R)dR = 1). We can define the aggregate demand for goods at a given price

level p to be the vector

A(p) =

∫ ∞
0

ζ(p,R)ρ(R)dR.

One might suppose that aggregate demand might behave more “smoothly” than
individual consumer demand.

Theorem 1.8. (Hildenbrand) If ρ(R) is a monotone decreasing function of R,
then dA : V ∗ → V is a negative form (i.e. dA(X,X) 6 0) even though it may not
be symmetric. Thus, there are no “aggregate Giffen goods”. (In fact, there are
not even any “aggregate inferior goods”.)

Proof. We shall assume that ρ is smooth, though this isn’t really necessary. The
derivative dA is the sum of the aggregated values of the two terms in the Slutsky
equation. The aggregated substitution-effect term is certainly negative (because
the substitution form σ is negative pointwise). Thus, it suffices to show that the
aggregated income-effect term is negative also.

Let X = (X i) be a vector in V ∗ and let us consider I(X,X), where I is the
aggregate income-effect term

I(X, Y ) = −
∫ ∞
0

α(p,R)(X)ζ(p,R)(Y )ρ(R)dR.

Observe that (by definition) α(p,R)(X) = ∂/∂Rζ(p,R)(X). Thus

I(X,X) = −
∫ ∞
0

1
2

∂

∂R

(
ζ(p,R)(X)2

)
ρ(R)dR

=

∫ ∞
0

(
ζ(p,R)(X)2

)
ρ′(R)dR 6 0

on integration by parts. The final inequality follows since ρ is decreasing. This
proves the theorem.

Of course the assumption that ρ is monotone decreasing is not very realistic.
The shochu paper mentioned above shows that the conclusion may not hold for a
strongly peaked ρ.
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Lecture 2
Exchange economies

In this lecture we’ll discuss some fundamental ideas of “free market” eco-
nomic theory. To keep matters simple, we will discuss only the case of a so-called
“exchange economy”. In such an economy, there are a number of agents who start
with a certain allocation of goods. The problem is for them to exchange these
goods among themselves in such a way as to arrive at a new allocation which is in
some sense “optimal” (or, more modestly, “unimprovable”). An exchange econ-
omy omits some notable features of the real economy, such as the production of
goods from other goods, the market for labor, etc. But it still is complex enough
to illustrate the operation of the classical theorems.

More formally, assume that we have a vector space V of bundles of commodi-
ties, as in the previous lecture. Assume that there exists a set A of economic
agents, and that each α ∈ A starts with a certain bundle of commodities wα ∈ V +

(the endowment). They exchange commodities among themselves to arrive at new
bundles aα ∈ V + (the allocation) subject to the law of conservation of commodi-
ties, ∑

α∈A

aα =
∑
α∈A

wα.

What are the most satisfactory allocations?
In answering this question we assume that each agent α has their own utility

function Uα, as in the previous lecture. It is standard to assume that no meaning
can be attached to comparisons between Uα and Uβ , for β 6= α: “there are no
interpersonal comparisons of utility”. (In other words, we can’t trade off the util-
ity I get from listening to bluegrass against the utility you get from listening to
opera.) This may seem an admirably fair-minded assumption, but it prevents one
from formulating any notion of the utility attached to “social welfare” and there-
fore, perhaps, contributes to the idea that such welfare is an illusion. (Margaret
Thatcher - “there is no such thing as society”.)

Let M denote the manifold of all possible allocations. Each Uα is a smooth
function on M . The Pareto cone at x ∈M is the subset of the tangent space TxM
defined by

{X ∈ TxM : dUα(X) > 0 ∀α ∈ A }.

In other words, my shifting the allocation x a little in the direction of the Pareto
cone, the utility of every agent can be increased. An allocation x is Pareto efficient

8



if its Pareto cone is empty (so that there is no local way to improve everyone’s
utility; any change that makes one agent better off makes another worse off.)

Remark 2.1. “Efficient” is one of the most loaded words in economics; after all,
who wants to be inefficient? One should underline therefore that a Pareto efficient
allocation may be very far from what we would generally regard as desirable.
Supposing for example that there is only one good (e.g., money). Since the utility-
functions are assumed to be increasing, each agent’s utility will be increased by
having more money and decreased otherwise. But the total amount of money is
constant, so no change can increase everyone’s wealth and thus every allocation
is Pareto efficient, including the allocation “all of you give all of your money to
me”.

A classical toy model to think about allocation and efficiency is called the
“Edgeworth Box” after F.Y. Edgeworth (1845-1926). See figure below.

In this model, we consider an economy with two goods (say, apples and ba-
nanas) and two agents (Alice and Bob). We normalize so that the total amount of
each good in the initial allocation is 1 unit.

Because there are only two agents, the manifold of allocations (M above) can
be taken to be the unit square (the “box”). A point (x, y) of the square represents
the allocation of x apples, y bananas to Alice and 1 − x apples, 1 − y bananas
to Bob. There are two foliations of the unit square: Alice’s indifference foliation,
whose leaves are convex, and Bob’s indifference foliation, measured the other
way, whose leaves are concave. At any point (x, y), the Pareto cone is contained
between the tangent lines to Alice’s and Bob’s indifference foliations at that point.
(See figure.)

It follows that the Pareto efficient allocations are represented by those points
where Alice’s and Bob’s indifference foliations are tangent to one another. For
each leaf of Alice’s indifference foliation (that is, for each fixed value of Alice’s
utility function) there exists by convexity exactly one Pareto efficient allocation
on that leaf. As Alice’s utility varies, these allocations vary on a curve, called
by Edgeworth the contract curve. One of Edgeworth’s major contributions was
(apparently) to show that the notion of efficiency does not single out a unique best
possible allocation.

The notion of efficiency depends only on the total amounts of each good in
the initial endowment, not on how these are distributed between Alice and Bob.
Suppose, however, that the initial endowment is (x0, y0). Alice’s and Bob’s in-
difference curves through this point delineate a lozenge-shaped region called the
feasible region — any allocation in this region will be viewed by both Alice and
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Bob as an improvement over the initial endowment. It is unlikely that both will be
happy with a redistribution taking the allocation outside the feasible region. The
part of the contract curve that lies within the feasible region is said to consist of
the core allocations—those Pareto efficient allocations which improve both Alice
and Bob’s view of their position. (With more than two agents the definition of the
core must be generalized, as we will see below.)

Consider one more notion. For each point (x, y) of the contract curve there is
a common tangent line `x,y to Alice’s and Bob’s indifference curves at that point.
As (x, y) runs along the contract curve, the line `x,y moves from the “bottom left”
to “top right” of the Edgeworth box. Using the intermediate value theorem, then,
it is easy to see that there is at least one point (x, y) for which the line `x,y passes
through the initial endowment (x0, y0). Such an allocation (which must be in the
core) is called Walrasian or competitive.

What is the meaning of the Walras condition? Let us recall the notion of a
price vector p ∈ V ∗, which assigns a price to every bundle of commodities. Sup-
pose that a price vector p is given. Then Alice might argue as follows: now that
she knows the price of apples and bananas, she knows the cash value (namely
p(x0, y0)) of her initial endowment. She might try to solve the following prob-
lem: find that bundle that maximizes her utility, subject to the budget constraint
p(x, y) 6 p(x0, y0) that she may not spend more than her initial endowment. This
problem has (because of strict convexity) a unique solution: let’s call that solution
ζA(p).

Of course Bob can carry out the same calculation, arriving at his utility-
maximizing bundle ζB(p). For a general p, however, Alice and Bob can’t both
achieve this utility maximization simultaneously, because ζA(p) and ζB(p) may
not add up to the initial total endowment of 1 unit apples, 1 unit bananas. The
competitive allocations are precisely those for which this simultaneous maximiza-
tion is possible. In other words, an allocation is competitive precisely when there
is a price vector for which the allocation simultaneously maximizes Alice’s and
Bob’s utility, subject to the budget constraints provided by the initial endowment.
It is easy to see graphically why this is so: the required price vector p is just the
normal to the line `x,y.

Now we will carry out this discussion in a more general session (a finite set A
of agents and a finite-dimensional vector space V of bundles). We have already
defined the notion of Pareto efficiency in this context. Recall also the notation
{wα} for the initial endowment.

Definition 2.2. Let {aα} be an allocation and let S ⊆ A . We say that S blocks
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the allocation {aα} if the total amount of goods belonging to S in the initial en-
dowment can be redistributed among the members of S in a way that is Pareto-
preferred to {aα} by all the members of S. In other words, there exist {bβ}β∈S
such that

∑
β∈S bβ =

∑
β∈S wβ and Uβ(bβ) > Uβ(aβ) for all a ∈ S, with strict

inequality in at least one case.

Definition 2.3. A core allocation is one that is not blocked by any subset of A .

Taking S = A we see that a core allocation is Pareto efficient. Taking S
to have one point we see that a core allocation must improve each agent’s utility
over the initial endowment. When there are only two agents these are the only two
conditions and we recover the notion of the core from the previous discussion.

Definition 2.4. An allocation {aα} is competitive or Walrasian if there exists a
price vector p such that, for each α ∈ A , the bundle aα maximizes utility for
agent α subject to the budget constraint px 6 pwα.

Lemma 2.5. A competitive allocation is a core allocation (in particular, it is
Pareto efficient).

Proof. Let p be a price vector implementing the Walras definition of competi-
tiveness, and let S be a potentially blocking subset for the competitive allocation
{aα}. Let {bβ}β∈S be a blocking allocation. For each β ∈ S, we know that aβ
maximizes utility subject to the budget constraint 6 pwβ . Since bβ is supposed to
have greater utility than aβ , it must break the budget constraint: pbβ > pwβ (at
least one strict inequality). But∑

S

pbβ = p

(∑
S

bβ

)
= p

(∑
S

wβ

)
=
∑
S

pwβ,

and this is a contradiction.

Theorem 2.6. (First welfare theorem) Competitive allocations exist, and they are
Pareto efficient,

The second statement follows from the preceding lemma, of course. Before
proving the theorem we make some comments about its application in economic
ideology. . .

The theorem is usually taken to illustrate the “invisible hand” maxim that self-
interested actors, guided by market forces (the price mechanism), can bring about
the general good of society. Adam Smith expressed this idea in the context of
international trade:
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By preferring the support of domestic to that of foreign industry, he
[an entrepreneur] intends only his own security; and by directing that
industry in such a manner as its produce may be of the greatest value,
he intends only his own gain, and he is in this, as in many other cases,
led by an invisible hand to promote an end which was no part of his
intention. Nor is it always the worse for the society that it was not part
of it. By pursuing his own interest he frequently promotes that of the
society more effectually than when he really intends to promote it. I
have never known much good done by those who affected to trade for
the public good. It is an affectation, indeed, not very common among
merchants, and very few words need be employed in dissuading them
from it.

But there are two caveats that need to be entered:

(a) As noted above, one cannot identify Pareto efficiency straightforwardly with
“the general good” or “the interest of society”. In fact, the theory is built on
incommensurable individual preferences, and there is no room for a concept
of “the general good”.

(b) In the theorem above (and the standard generalizations in General Equilib-
rium Theory), the agents have a rather passive role with respect to prices. It is
simply assumed that “the market” will arrive somehow at a competitive price
vector. But how can this come about? Walras proposed a model where the
markets are governed by an Auctioneer who repeatedly calls out prices and
learns from the agents which goods they would be prepared to trade at the
specified prices. When, and only when, the Auctioneer has arrived at a com-
petitive price vector, are the agents permitted to trade, and then only at the
specified price. Obviously this is a long way from our intuitive picture of the
“free market”.

Proof. To show that a competitive allocation exists, we will use the Brouwer fixed
point theorem. Let p be a (positive) price vector; we may as well normalize it so
that

∑
pj = 1 (this doesn’t affect anything — multiplying all prices by a constant

leaves the utility-maximizing allocations unchanged). Thus p lies in the simplex
∆ = {pj : pj > 0,

∑
pj = 1}, which is topologically a disc.

For given p and an agent α, let ζα(p) ∈ V be the bundle that maximizes α’s
utility subject to the budget constraint pwα given by the initial allocation. It is
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uniquely defined and depends continuously on p (by the strict convexity assump-
tion). Let

e(p) =
∑
α

(ζα(p)− wα) ∈ V

be the excess demand function: we are seeking a p such that e(p) = 0. Note that,
by construction,

pe(p) =
∑
α

p (ζα(p)− wα) = 0.

Now define a map T : ∆→ ∆ as follows: define δj = max{ej(p), 0} and then set

T (p)j = (pj + δj)/Q, where Q = (1 +
∑
δi).

By Brouwer’s theorem, T has a fixed point. At that fixed point, we have pjQ =
pj + δj for all j, and so

δj = pj
∑

δi.

We are going to show that all the δi equal zero. If not, then by the last displayed
equation δj > 0 (and therefore ej > 0) whenever pj > 0. It follows that

∑
pjej >

0, a contradiction.
Thus we have shown that for the p selected by Brouwer’s fixed-point theorem,

ej(p) 6 0 for all j. Since
∑
pjej(p) = 0 we deduce that in fact ej(p) = 0 for all

j and we are done.
Strictly speaking we need to rule out cases where some pj = 0. However, this

corresponds to the case where good j is free. At price 0 we may expect that an
infinite amount of j will be demanded; thus ej > 0 and this case cannot in fact
occur.
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Lecture 3
The second fundamental theorem

We recall the set-up of the previous lecture. We have our usual vector space V of
bundles of commodities, and a set A of agents. An allocation is an element of
the vector space V A , i.e., a list of bundles, one for each agent. We consider only
allocations lying in the positive cone. An initial allocation {wα} called the endow-
ment is given and we restrict attention to allocations {aα} that may be obtained
from the initial endowment by exchange, i.e. such that

∑
aα =

∑
wα. Such an

allocation is called competitive for a price vector p if

aα = ζα(p, pwα);

that is, if each agent’s bundle is utility-maximizing subject to the budget constraint
given by the dollar value of the initial endowment. A competitive allocation is
Pareto efficient, and the first fundamental theorem of welfare economics says that
competitive allocations always exist. We proved this last time using the Brouwer
fixed point theorem.

To state the second fundamental theorem we need a more general notion.

Definition 3.1. A competitive allocation with transfers is an allocation aα for
which there exists a price vector p and a list {tα} of real numbers (the transfers)
such that

∑
α tα = 0), such that

aα = ζα(p, pwα − tα).

The interpretation of this condition is that government redistributes money
among the agents in accordance with the vector {tα} of transfers: once this is
done, the “market takes over” and produces a competitive allocation.

Theorem 3.2. Any Pareto efficient allocation is a competitive allocation with suit-
able transfers.

The traditional interpretation of this is as follows. Any socially desirable
outcome must be Pareto efficient (otherwise, it could be improved at no cost to
anyone, and why would you not do that)? So the outcomes that a benevolent
government might wish to bring about should include only the Pareto efficient
ones. According to the second welfare theorem, then, any such objective can
be achieved just by suitable redistributive taxation followed by the operation of
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the free market. Thus, “social welfare” questions are reduced simply to moving
around money which agents then freely use (no strings attached). There is no
need for the government to actively steer people towards the choices it regards as
desirable (“interfering in the market”).

The non-uniqueness of equilibria interferes somewhat with this happy picture,
as does the level of governmental omniscience that would be required in prac-
tice to compute the transfers needed to achieve some particular objective. Other
reasons for scepticism will be discussed later.

Proof. Let W = V A be the vector space of allocations. Let U be the subspace
of W defined by U = {(xα) :

∑
xα = 0} (this is the vector space of exchanges)

and let U− = {(xα) :
∑
xα 6 0}, where the inequality refers to the ordering

of V (exchanges with wastage). Let w = (wα) be the initial endowment and let
a = (aα) be the Pareto efficient allocation given in the statement of the theorem;
by assumption, a− w ∈ U , that is, a and w are equivalent under exchange.

Define subsets A and B of W as follows:

A = w + U− = a+ U−, B = {(xα) : Uα(xα) > Uα(aα)}.

Here Uα is the utility function for agent α, so that B is the collection of all al-
locations that are (strongly) Pareto preferred to a. The hypothesis of efficiency
says that no allocation accessible by exchange from a is preferred to a; that is,
A ∩B = ∅.

Since A and B are convex and B is open, the Hahn-Banach theorem gives a
linear functional φ ∈ W ∗ and a constant λ ∈ R such that

φ(x) 6 λ < φ(y)

for all x ∈ A and y ∈ B. Since A contains a coset of the subspace U , the linear
functional φ is bounded on U (by 2|λ|) and is therefore zero there (because U is a
subspace). Now the map σ : (xα) 7→

∑
xα induces an isomorphism of W/U onto

V , and by the first isomorphism theorem there is p ∈ V ∗ such that φ = pσ.
We show that p is a price vector (i.e., it is positive). Let v be any bundle (an

element of the positive cone of V ). Then for sufficiently large r > 0, the element
(−rv,−rv, . . .) must belong to A. Thus −Nrp(v) is bounded above as r → ∞.
This can happen only if p(v) > 0.

Next we show that aα = ζα(p, paα) for each α — in other words, given the
price vector p, each agent α finds his/her bundle aα optimal for its price. Suppose
not. Then, for at least one agent, say β, there exists a new allocation bα such that

bα = aα (α 6= β), p(bβ) = p(aβ), Uβ(bβ) > Uβ(aβ).
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In particular, φ(b) =
∑
p(bα) = φ(a). Since the U ’s are assumed continuous and

increasing, one can redistribute a small amount of one good from agent β to the
other agents to arrive at a new allocation c for which

φ(c) = φ(b) = φ(a), Uα(cα) > Uα(aα) ∀α ∈ A .

But now c ∈ B, a ∈ A, and φ(c) = φ(a); this is a contradiction.
Finally define the transfers tα = p(wα)− p(aα) ∈ R. The sum of the transfers

is indeed zero because w − a ∈ U ⊆ kerφ. By construction, then,

aα = ζα(p, pwα − tα)

so a is indeed a competitive allocation with transfers.

We went on to talk about the idea of Kaldor-Hicks efficiency, and cost-benefit
analysis. We went on to discuss the limits of the model, especially the individ-
ualistic nature of the model for welfare (my welfare depends on my “stuff” and
nothing else).
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Lecture 4
Production
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