Module 5
Applications of Linear Equations in Two Variables
Things to Know

- Goal is to model the problem as an equation of the form $y = mx + b$.
- From the problem, we need to identify a point and a slope or two points.
- Slope – represents how a quantity is changing
- Points – represent a correspondence between two quantities.
Writing an equation and drawing its graph to model a real-world situation

Owners of a recreation area are filling a small pond with water. They are adding water at a rate of 30 liters per minute. There are 500 liters in the pond to start.

Let \(W \) represent the amount of water in the pond (in liters), and let \(t \) represent the number of minutes that water has been added. Write an equation relating \(W \) to \(t \), and then graph your equation using the axes below.
$W = \text{amount of water} \quad t = \# \text{ of minutes}$

<table>
<thead>
<tr>
<th>t</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>500 + 30 = 530</td>
</tr>
<tr>
<td>2</td>
<td>500 + 2(30) = 560</td>
</tr>
<tr>
<td>3</td>
<td>500 + 3(30) = 590</td>
</tr>
<tr>
<td>t</td>
<td>$500 + t(30) = 500 + 30t$</td>
</tr>
</tbody>
</table>

$W = 500 + 30t$

$W = \frac{30t + 500}{1}$

$W = 30t + 500$
Application problem with a linear function: Problem type 1

Suppose that the weight (in pounds) of an airplane is a linear function of the total amount of fuel (in gallons) in its tank. When graphed, the function gives a line with a slope of 6.4. See the figure below.

\[x = \text{amt of fuel} \]
\[y = \text{weight} \]
With 45 gallons of fuel in its tank, the airplane has a weight of 2188 pounds. What is the weight of the plane with 78 gallons of fuel in its tank?

\[y = 6.4x + 1900 \]

\[y = 6.4(78) + 1900 \]

\[y = 2399.2 \text{ lb} \]
Application problem with a linear function: Problem type 2

The monthly cost (in dollars) of water used is a linear function of the amount of water used (in hundreds of cubic feet, HCF). The cost for using 23 HCF of water is $39.77, and the cost for using 34 HCF is $57.92. What is the cost for using 28 HCF of water?

\[\begin{align*}
X &= \text{amt of water} \\
Y &= \text{cost} \\
(23, 39.77) &\quad (34, 57.92)
\end{align*} \]

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{57.92 - 39.77}{34 - 23} = \frac{18.15}{11} = 1.65 \]

\[y = mx + b \]

\[39.77 = 1.65(23) + b \]

\[39.77 = 37.95 + b \]

\[b = 1.82 \]

\[y = 1.65x + 1.82 \]

\[y = 1.65(28) + 1.82 \]

\[y = 48.02 \]