Things to Know

- A quadratic equation is an equation of the form \(ax^2 + bx + c = 0 \).
- Methods to solve quadratic equations include
 - Factoring (Zero Products Property)
 - Square Root Property
 - Completing the Square
 - Quadratic Formula
The Square Root Property states that if \(x^2 = k \), then \(x = \sqrt{k} \) or \(x = -\sqrt{k} \); that is, \(x = \pm \sqrt{k} \).

Completing the square means to make a perfect square trinomial from a binomial of the form \(x^2 + bx \). The value \(c \) must equal \(\left(\frac{b}{2} \right)^2 \).

The Quadratic Formula states that if \(ax^2 + bx + c = 0 \), then \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).
Solving a quadratic equation using the square root property: Problem type 1

Solve $x^2 = -96$, where x is a real number.
Simplify your answer as much as possible.

If there is more than one solution, separate them with commas.

$x^2 = -96$
$x = \pm \sqrt{-96}$
$x = \pm \sqrt{-16 \cdot 6}$
$x = \pm 4i \sqrt{6}$

No real solutions
Complex solutions

$x = 4i \sqrt{6}, -4i \sqrt{6}$
Solving a quadratic equation using the square root property: Problem type 2

Solve \((y+9)^2 - 27 = 0\), where \(y\) is a real number.
Simplify your answer as much as possible.

\[
(y+9)^2 = 27 \\
y+9 = \pm \sqrt{27} \\
y+9 = \pm 3\sqrt{3} \\
y = -9 \pm 3\sqrt{3}
\]

\[-9 + 3\sqrt{3}, -9 - 3\sqrt{3}\]
Completing the square

Fill in the blank to make the expression a perfect square.

\[x^2 + 2x + [__] \]

\[x^2 + 2x + \left(\frac{2}{2} \right)^2 \]

\[x^2 + 2x + 1 \]

Check: \((x + 1)(x + 1) = (x + 1)^2\)
Solving a quadratic equation by completing the square

Solve the quadratic equation by completing the square.

\[x^2 + 4x - 6 = 0 \]

First, choose the appropriate form and fill in the blanks with the correct numbers.

Then, solve the equation. If there is more than one solution, separate them with commas.

<table>
<thead>
<tr>
<th>Form:</th>
<th>((x + \square)^2 = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x + \square))</td>
<td>((x + 2)^2 = 10)</td>
</tr>
<tr>
<td>((x - \square)^2)</td>
<td>(10)</td>
</tr>
</tbody>
</table>

Solution:

\[x = -2 + \sqrt{10}, -2 - \sqrt{10} \]

\[x^2 + 4x - 6 = 0 \]
\[(\frac{4}{2})^2 = 4 \]

\[x^2 + 4x + 4 = 6 + 4 \]
\[(x + 2)^2 = 10 \]
\[(x + 2) = \pm \sqrt{10} \]
\[x = -2 \pm \sqrt{10} \]
Applying the quadratic formula: Exact answers

Use the quadratic formula to solve for \(x \).

\[\alpha x^2 + \beta x + \gamma = 0 \]

\[x = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha} \]

\[3x^2 - 2x - 6 = 0 \]

\[a = 3 \]
\[b = -2 \]
\[c = -6 \]

\[x = \frac{(-2) \pm \sqrt{(-2)^2 - 4(3)(-6)}}{2(3)} \]

\[x = \frac{2 \pm \sqrt{4 + 72}}{6} = \frac{2 \pm \sqrt{76}}{6} \]

\[\frac{1 + \sqrt{19}}{3}, \frac{1 - \sqrt{19}}{3} \]
Solving a quadratic equation with complex roots

Find all complex solutions of $3x^2 + 2x + 5 = 0$.

$a = 3$
$b = 2$
$c = 5$

\[X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[X = \frac{-2 \pm \sqrt{2^2 - 4(3)(5)}}{2(3)} \]

\[X = -2 \pm \frac{\sqrt{4 - 60}}{6} = -2 \pm \frac{\sqrt{-56}}{6} \]

Solutions: $\frac{-1 + i\sqrt{14}}{3}, \frac{-1 - i\sqrt{14}}{3}$
Discriminant of a quadratic equation

Compute the value of the discriminant and give the number of real solutions of the quadratic equation.

\[3x^2 - 2x + 4 = 0 \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[b^2 - 4ac = \text{discriminant} \]

\[b^2 - 4ac > 0 \Rightarrow 2\text{ real sol.} \]
\[b^2 - 4ac = 0 \Rightarrow 1\text{ real sol.} \]
\[b^2 - 4ac < 0 \Rightarrow 0\text{ real sol.} \]

\[a = 3, \ b = -2, \ c = 4 \]

\[b^2 - 4ac = (-2)^2 - 4(3)(4) = 4 - 48 = -44 \]

no real sol.
Solving equations that can be written in quadratic form: Problem type 1

Solve.

\(x^4 - 6x^2 + 5 = 0 \)

If there is more than one solution, separate them with commas.

\[(x^2 - 3)(x^2 - 2) = 0\]

\(x^2 - 3 = 0 \) or \(x^2 - 2 = 0 \)

\(x^2 = 3 \)

\(x = \pm \sqrt{3} \)

\(x^2 = 2 \)

\(x = \pm \sqrt{2} \)

\(\sqrt{3}, -\sqrt{3}, \sqrt{2}, -\sqrt{2} \)